Summary of Euler lengths for small powers

For comments on the following table, see below.

x \ m=

3

4

5

6

7

8

9

10

11

12

4

5

16

19

15

66

121

146

199

277

911

5

7

5

18

29

39

80

32

188

137

365

6

3

6

14

22

28

55

102

144

145

456

7

4

6

12

21

26

40

67

122

51

196

8

5

16

9

15

21

44

63

89

88

157

9

3

6

11

19

20

34

46

56

70

118

10

5

5

9

15

18

40

32

56

85

66

11

5

7

13

17

22

40

37

44

75

79

12

3

6

6

15

22

34

42

34

61

66

13

4

6

12

16

22

38

33

46

52

78

14

4

6

8

14

20

36

34

39

38

66

15

5

5

10

15

21

36

29

23

46

66

16

5

16

9

13

14

34

29

34

40

54

17

5

6

8

12

17

17

29

34

46

53

18

3

6

10

11

14

34

27

34

39

44

19

3

6

10

11

14

29

26

33

38

42

20

3

5

9

13

17

34

24

34

42

46

21

4

6

10

14

16

27

16

23

39

42

22

5

7

10

12

17

33

25

33

35

44

23

4

6

7

13

14

29

19

32

36

40

24

3

6

6

13

16

33

19

34

35

 

25

3

5

9

12

13

32

20

26

31

 

26

4

6

7

12

15

 

15

 

 

 

27

3

6

9

12

13

 

18

 

 

 

28

4

6

8

12

12

 

21

 

 

 

29

3

6

9

12

15

 

21

 

 

 

30

3

5

6

11

13

 

17

 

 

 

31

4

5

9

11

15

 

19

 

 

 

32

4

16

6

11

13

 

18

 

 

 

33

4

6

8

11

14

 

19

 

 

 

34

4

6

7

11

13

 

19

 

 

 

35

4

5

7

13

14

 

18

 

 

 

36

3

6

6

11

13

 

17

 

 

 

37

4

6

8

11

13

 

17

 

 

 

38

3

6

7

11

14

 

18

 

 

 

39

4

6

8

10

12

 

19

 

 

 

40

3

5

7

11

12

 

18

 

 

 

41

3

6

7

11

 

 

 

 

 

 

42

3

6

7

11

 

 

 

 

 

 

43

4

6

9

11

 

 

 

 

 

 

44

3

7

8

11

 

 

 

 

 

 

45

3

5

9

10

 

 

 

 

 

 

 

The above table highlights a variety of points.

The values for m = 3 are consistent with the conjecture that G(3) £ 4 (see Chapter 7). This is slightly misleading as the above table gives the shortest representation of xm in terms of lesser mth powers, whereas with g(m) and G(m), xm is itself the shortest.

For m = 4, the values indicate that when x is a power of 2, at least 16 powers are required, consistent with Davenport’s result that G(4) = 16, and otherwise, that at most 6 are needed in the long term. The trends for higher powers are similar in that they all quickly settle around a plateau of values. One wonders how close these values come to suggesting G(m) ?

The table also suggests that m = 9 in an inherently "better" power for obtaining Euler representations than m = 8, with solutions being found quicker and of shorter length on average for a particular base. However, as seen in Chapter 1, the m = 8 case allows additional restrictive conditions to be applied when searching for the shortest possible.

On a more speculative note, there are vague patterns and instances that suggest the following:

For each m,

are there "favoured" values for Euler lengths, that recur regularly ?

is there any significance in common Euler lengths for consecutive bases ?

is there any significance in exceptional values such as that for 178 ?