Enumeration of Proth Primes
Proth primes, or Robinson primes as I prefer to call them, are primes of the form k*2n +1 where k is odd. Bearing in mind that all primes can be expressed in this form, it is obvious that there is more to this than meets the eye.
Firstly, when k < 2n, there is a very efficient algorithm for proving primality, and secondly, divisors of generalised Fermat numbers GF(a,m) must be of the form k*2n + 1 for some n greater than m.
It is therefore useful to have readily available lists of such primes for small k. In this article, we are interested in enumerating Proth primes for k < 105. Additional benefits include the production of a large body of sample primes for whatever reason, including divisibility properties and statistical analysis.
For n £ 1000, the frequency of occurrence of primes is very high, and all kinds of analysis can be performed. Counts of Proth primes for each n may be found in robstats.txt. Counts of prime for each k may be found in robcount.txt (N.B. leaving 247 values of k with no associated Proth prime in this range). For each k, if we count the number of Proth primes in the range, the counts range from 0 to 48, i.e. there is a value of k which produces 48 Proth primes with n £ 1000. Counts of counts may be found in robsumm.txt. I have also previously checked the primes in this range as divisors of generalised Fermat numbers with non-prime-power bases less than 100.
A detailed breakdown of the number of Proth primes n this first range is as follows:
n \ k |
<10000 |
<20000 |
<30000 |
<40000 |
<50000 |
<60000 |
<70000 |
<80000 |
<90000 |
<100000 |
total |
£ 100 |
31947 |
29840 |
29382 |
29038 |
28671 |
28460 |
27939 |
27932 |
27950 |
27895 |
289054 |
£ 200 |
9100 |
9002 |
9061 |
8889 |
8946 |
8960 |
9053 |
8860 |
8796 |
8930 |
89597 |
£ 300 |
5487 |
5473 |
5405 |
5459 |
5576 |
5495 |
5516 |
5534 |
5499 |
5408 |
54852 |
£ 400 |
3998 |
4035 |
4026 |
3949 |
3772 |
3883 |
3947 |
4101 |
3904 |
3970 |
39585 |
£ 500 |
3209 |
3183 |
3052 |
3132 |
3137 |
3057 |
3046 |
3210 |
3206 |
3141 |
31373 |
£ 600 |
2604 |
2604 |
2472 |
2495 |
2602 |
2661 |
2580 |
2654 |
2505 |
2568 |
25745 |
£ 700 |
2171 |
2168 |
2178 |
2162 |
2169 |
2134 |
2107 |
2152 |
2158 |
2160 |
21559 |
£ 800 |
1896 |
1872 |
1838 |
1802 |
1873 |
1792 |
1903 |
1899 |
1811 |
1860 |
18546 |
£ 900 |
1659 |
1649 |
1692 |
1705 |
1619 |
1642 |
1622 |
1658 |
1615 |
1711 |
16572 |
£ 1000 |
1405 |
1475 |
1496 |
1517 |
1544 |
1522 |
1523 |
1545 |
1583 |
1524 |
15134 |
total |
63476 |
61301 |
60602 |
60148 |
59909 |
59606 |
59236 |
59545 |
59027 |
59167 |
602017 |
Lists of these primes, though large, are available on request.
Wilfrid Keller has for many years co-ordinated the search for divisors of generalised Fermat numbers, and as part of this has kept statistics on the numbers of Proth primes for k < 100000, and higher exponents n. However, this data has never been made available for general consumption. This article is an attempt to provide detailed counts for higher exponents, and the aim is to keep it as up-to-date as possible.
The following counts are provided in ranges of n up to whole thousands, with subdivisions at each hundred.
The next table is for the range 1001 £ n £ 2000.
n \ k |
<10000 |
<20000 |
<30000 |
<40000 |
<50000 |
<60000 |
<70000 |
<80000 |
<90000 |
<100000 |
total |
£ 1100 |
1384 |
1427 |
1389 |
1348 |
1416 |
1363 |
1295 |
1330 |
1313 |
1366 |
13631 |
£ 1200 |
1307 |
1237 |
1226 |
1268 |
1243 |
1223 |
1219 |
1264 |
1243 |
1274 |
12504 |
£ 1300 |
1100 |
1090 |
1090 |
1102 |
1150 |
1191 |
1141 |
1154 |
1070 |
1183 |
11271 |
£ 1400 |
1053 |
1065 |
1040 |
1096 |
1101 |
1027 |
1018 |
1033 |
1058 |
1007 |
10498 |
£ 1500 |
1015 |
1000 |
1027 |
1050 |
1023 |
1030 |
970 |
979 |
997 |
1007 |
10098 |
£ 1600 |
950 |
935 |
944 |
885 |
879 |
930 |
940 |
945 |
903 |
908 |
9219 |
£ 1700 |
848 |
857 |
826 |
853 |
879 |
868 |
852 |
861 |
892 |
866 |
8602 |
£ 1800 |
771 |
852 |
796 |
766 |
839 |
802 |
836 |
802 |
790 |
791 |
8045 |
£ 1900 |
749 |
783 |
772 |
755 |
763 |
777 |
746 |
733 |
734 |
769 |
7581 |
£ 2000 |
724 |
732 |
713 |
741 |
741 |
738 |
699 |
738 |
767 |
713 |
7306 |
total |
9901 |
9978 |
9823 |
9864 |
10034 |
9949 |
9716 |
9839 |
9767 |
9884 |
98755 |
The next table is for the range 2001 £ n £ 3000.
n \ k |
<10000 |
<20000 |
<30000 |
<40000 |
<50000 |
<60000 |
<70000 |
<80000 |
<90000 |
<100000 |
total |
£ 2100 |
668 |
648 |
676 |
703 |
672 |
755 |
703 |
683 |
719 |
656 |
6883 |
£ 2200 |
650 |
675 |
686 |
685 |
627 |
685 |
650 |
701 |
625 |
639 |
6623 |
£ 2300 |
669 |
630 |
652 |
596 |
622 |
630 |
636 |
583 |
598 |
626 |
6242 |
£ 2400 |
598 |
582 |
621 |
619 |
575 |
569 |
604 |
567 |
572 |
592 |
5899 |
£ 2500 |
580 |
580 |
571 |
570 |
599 |
571 |
567 |
563 |
559 |
586 |
5746 |
£ 2600 |
529 |
600 |
589 |
535 |
559 |
528 |
598 |
595 |
551 |
518 |
5602 |
£ 2700 |
565 |
510 |
533 |
537 |
528 |
527 |
581 |
544 |
525 |
561 |
5411 |
£ 2800 |
557 |
531 |
531 |
544 |
528 |
545 |
503 |
571 |
522 |
506 |
5338 |
£ 2900 |
486 |
499 |
519 |
524 |
508 |
520 |
512 |
482 |
527 |
490 |
5067 |
£ 3000 |
519 |
488 |
507 |
451 |
487 |
481 |
454 |
478 |
457 |
432 |
4754 |
total |
5821 |
5743 |
5885 |
5764 |
5705 |
5811 |
5808 |
5767 |
5655 |
5606 |
57565 |
The next table is for the range 3001 £ n £ 4000.
n \ k |
<10000 |
<20000 |
<30000 |
<40000 |
<50000 |
<60000 |
<70000 |
<80000 |
<90000 |
<100000 |
total |
£ 3100 |
458 |
473 |
450 |
439 |
457 |
469 |
445 |
461 |
448 |
460 |
4560 |
£ 3200 |
473 |
461 |
467 |
461 |
469 |
460 |
464 |
478 |
439 |
455 |
4627 |
£ 3300 |
425 |
454 |
444 |
435 |
421 |
446 |
444 |
416 |
444 |
427 |
4356 |
£ 3400 |
446 |
449 |
462 |
457 |
463 |
401 |
416 |
433 |
451 |
449 |
4427 |
£ 3500 |
438 |
416 |
436 |
418 |
452 |
403 |
412 |
411 |
405 |
438 |
4229 |
£ 3600 |
396 |
407 |
429 |
379 |
409 |
396 |
359 |
394 |
414 |
378 |
3961 |
£ 3700 |
362 |
422 |
400 |
382 |
408 |
449 |
418 |
425 |
385 |
401 |
4052 |
£ 3800 |
390 |
386 |
410 |
372 |
408 |
407 |
384 |
400 |
365 |
436 |
3958 |
£ 3900 |
356 |
379 |
401 |
365 |
386 |
308 |
373 |
361 |
408 |
396 |
3733 |
£ 4000 |
366 |
338 |
380 |
340 |
381 |
389 |
349 |
354 |
352 |
345 |
3594 |
total |
4110 |
4185 |
4279 |
4048 |
4254 |
4128 |
4064 |
4133 |
4111 |
4185 |
41497 |
The next table is for the range 4001 £ n £ 5000.
n \ k |
<10000 |
<20000 |
<30000 |
<40000 |
<50000 |
<60000 |
<70000 |
<80000 |
<90000 |
<100000 |
total |
£ 4100 |
351 |
347 |
348 |
370 |
368 |
339 |
375 |
391 |
370 |
331 |
3590 |
£ 4200 |
330 |
368 |
325 |
360 |
369 |
315 |
357 |
364 |
338 |
329 |
3455 |
£ 4300 |
347 |
313 |
334 |
297 |
339 |
315 |
333 |
323 |
350 |
349 |
3300 |
£ 4400 |
326 |
338 |
322 |
306 |
296 |
339 |
317 |
343 |
346 |
317 |
3250 |
£ 4500 |
329 |
315 |
313 |
343 |
293 |
329 |
336 |
325 |
304 |
335 |
3222 |
£ 4600 |
348 |
303 |
293 |
335 |
325 |
292 |
314 |
324 |
305 |
307 |
3146 |
£ 4700 |
278 |
293 |
289 |
313 |
312 |
290 |
299 |
295 |
324 |
329 |
3022 |
£ 4800 |
351 |
300 |
296 |
292 |
271 |
296 |
320 |
286 |
292 |
306 |
3010 |
£ 4900 |
281 |
281 |
289 |
299 |
288 |
282 |
271 |
279 |
327 |
273 |
2870 |
£ 5000 |
290 |
289 |
276 |
275 |
279 |
285 |
301 |
266 |
286 |
295 |
2842 |
total |
3231 |
3147 |
3085 |
3190 |
3140 |
3082 |
3223 |
3196 |
3242 |
3171 |
31707 |
The next table is for the range 5001 £ n £ 6000.
n \ k |
<10000 |
<20000 |
<30000 |
<40000 |
<50000 |
<60000 |
<70000 |
<80000 |
<90000 |
<100000 |
total |
£ 5100 |
256 |
283 |
285 |
315 |
269 |
288 |
295 |
262 |
280 |
294 |
2827 |
£ 5200 |
288 |
277 |
262 |
265 |
283 |
291 |
302 |
303 |
235 |
298 |
2804 |
£ 5300 |
276 |
283 |
279 |
249 |
286 |
297 |
282 |
290 |
285 |
252 |
2779 |
£ 5400 |
265 |
278 |
298 |
280 |
247 |
291 |
270 |
258 |
249 |
270 |
2706 |
£ 5500 |
223 |
246 |
282 |
285 |
241 |
261 |
288 |
290 |
243 |
267 |
2626 |
£ 5600 |
224 |
269 |
238 |
255 |
257 |
267 |
234 |
248 |
250 |
255 |
2497 |
£ 5700 |
268 |
269 |
235 |
246 |
272 |
258 |
280 |
266 |
249 |
249 |
2592 |
£ 5800 |
241 |
225 |
261 |
225 |
233 |
248 |
271 |
249 |
251 |
253 |
2457 |
£ 5900 |
250 |
240 |
238 |
243 |
270 |
251 |
217 |
229 |
212 |
228 |
2378 |
£ 6000 |
249 |
240 |
252 |
244 |
241 |
244 |
257 |
252 |
245 |
258 |
2482 |
total |
2540 |
2610 |
2630 |
2607 |
2599 |
2696 |
2696 |
2647 |
2499 |
2624 |
26148 |
The next table is for the range 6001 £ n £ 7000.
n \ k |
<10000 |
<20000 |
<30000 |
<40000 |
<50000 |
<60000 |
<70000 |
<80000 |
<90000 |
<100000 |
total |
£ 6100 |
223 |
245 |
243 |
236 |
226 |
252 |
237 |
232 |
214 |
246 |
2354 |
£ 6200 |
216 |
236 |
259 |
233 |
253 |
254 |
235 |
261 |
247 |
227 |
2421 |
£ 6300 |
239 |
223 |
219 |
223 |
240 |
232 |
207 |
220 |
243 |
241 |
2287 |
£ 6400 |
244 |
235 |
234 |
212 |
235 |
222 |
215 |
213 |
196 |
241 |
2247 |
£ 6500 |
228 |
239 |
204 |
216 |
238 |
229 |
198 |
237 |
230 |
236 |
2255 |
£ 6600 |
231 |
238 |
221 |
237 |
198 |
215 |
202 |
203 |
248 |
193 |
2186 |
£ 6700 |
214 |
229 |
242 |
205 |
224 |
201 |
236 |
215 |
207 |
191 |
2164 |
£ 6800 |
191 |
209 |
184 |
214 |
217 |
172 |
214 |
220 |
179 |
189 |
1989 |
£ 6900 |
229 |
216 |
197 |
195 |
208 |
185 |
200 |
194 |
200 |
209 |
2033 |
£ 7000 |
222 |
194 |
201 |
182 |
213 |
206 |
205 |
219 |
194 |
195 |
2031 |
total |
2237 |
2264 |
2204 |
2153 |
2252 |
2168 |
2149 |
2214 |
2158 |
2168 |
21967 |
The next table is for the range 7001 £ n £ 8000.
n \ k |
<10000 |
<20000 |
<30000 |
<40000 |
<50000 |
<60000 |
<70000 |
<80000 |
<90000 |
<100000 |
total |
£ 7100 |
213 |
241 |
163 |
193 |
184 |
195 |
185 |
204 |
186 |
225 |
1989 |
£ 7200 |
182 |
215 |
201 |
175 |
202 |
189 |
187 |
198 |
211 |
173 |
1933 |
£ 7300 |
183 |
218 |
185 |
177 |
204 |
187 |
170 |
173 |
189 |
177 |
1863 |
£ 7400 |
181 |
188 |
201 |
202 |
198 |
234 |
210 |
214 |
207 |
196 |
2031 |
£ 7500 |
196 |
191 |
189 |
178 |
199 |
201 |
199 |
194 |
193 |
230 |
1970 |
£ 7600 |
224 |
208 |
194 |
170 |
210 |
195 |
167 |
188 |
196 |
173 |
1925 |
£ 7700 |
184 |
203 |
185 |
163 |
199 |
184 |
188 |
212 |
190 |
184 |
1892 |
£ 7800 |
177 |
205 |
171 |
189 |
169 |
181 |
185 |
182 |
169 |
160 |
1788 |
£ 7900 |
179 |
208 |
178 |
171 |
180 |
186 |
176 |
195 |
172 |
185 |
1830 |
£ 8000 |
181 |
182 |
159 |
172 |
183 |
174 |
181 |
199 |
177 |
172 |
1780 |
total |
1900 |
2059 |
1826 |
1790 |
1928 |
1926 |
1848 |
1959 |
1890 |
1875 |
19001 |
The next table is for the range 8001 £ n £ 9000.
n \ k |
<10000 |
<20000 |
<30000 |
<40000 |
<50000 |
<60000 |
<70000 |
<80000 |
<90000 |
<100000 |
total |
£ 8100 |
187 |
191 |
183 |
161 |
181 |
188 |
177 |
185 |
158 |
181 |
1792 |
£ 8200 |
170 |
161 |
162 |
157 |
175 |
177 |
174 |
183 |
151 |
184 |
1694 |
£ 8300 |
165 |
162 |
158 |
162 |
156 |
173 |
164 |
186 |
173 |
164 |
1663 |
£ 8400 |
163 |
143 |
172 |
182 |
164 |
158 |
185 |
166 |
176 |
172 |
1681 |
£ 8500 |
153 |
179 |
149 |
172 |
177 |
174 |
167 |
145 |
188 |
168 |
1672 |
£ 8600 |
158 |
169 |
156 |
162 |
169 |
160 |
167 |
169 |
186 |
163 |
1659 |
£ 8700 |
153 |
185 |
172 |
174 |
158 |
184 |
166 |
178 |
178 |
167 |
1715 |
£ 8800 |
175 |
163 |
165 |
143 |
151 |
167 |
176 |
153 |
162 |
146 |
1601 |
£ 8900 |
153 |
185 |
147 |
152 |
154 |
181 |
163 |
156 |
145 |
166 |
1602 |
£ 9000 |
158 |
165 |
175 |
141 |
162 |
174 |
164 |
148 |
179 |
143 |
1609 |
total |
1635 |
1703 |
1639 |
1606 |
1647 |
1736 |
1703 |
1669 |
1696 |
1654 |
16688 |
The next table completes the search to n = 10000.
N \ k |
<10000 |
<20000 |
<30000 |
<40000 |
<50000 |
<60000 |
<70000 |
<80000 |
<90000 |
<100000 |
total |
£ 9100 |
157 |
161 |
159 |
163 |
156 |
159 |
144 |
181 |
160 |
152 |
1592 |
£ 9200 |
170 |
148 |
167 |
176 |
174 |
143 |
165 |
180 |
148 |
150 |
1621 |
£ 9300 |
142 |
153 |
148 |
154 |
162 |
151 |
188 |
162 |
159 |
161 |
1580 |
£ 9400 |
159 |
138 |
150 |
166 |
142 |
157 |
142 |
140 |
147 |
150 |
1491 |
£ 9500 |
158 |
157 |
156 |
150 |
147 |
146 |
178 |
167 |
159 |
139 |
1557 |
£ 9600 |
152 |
130 |
154 |
134 |
164 |
146 |
146 |
173 |
154 |
131 |
1484 |
£ 9700 |
168 |
135 |
138 |
133 |
146 |
150 |
152 |
165 |
137 |
140 |
1464 |
£ 9800 |
164 |
155 |
167 |
151 |
166 |
127 |
129 |
152 |
157 |
156 |
1524 |
£ 9900 |
150 |
143 |
136 |
129 |
141 |
144 |
143 |
147 |
149 |
163 |
1445 |
£ 10000 |
143 |
137 |
153 |
139 |
140 |
143 |
148 |
173 |
143 |
126 |
1445 |
total |
1563 |
1457 |
1528 |
1495 |
1538 |
1466 |
1535 |
1640 |
1513 |
1468 |
15203 |
The grand totals for 1 £ n £ 10000 are as follows.
Total |
96414 |
94447 |
93501 |
92665 |
93006 |
92568 |
91978 |
92609 |
91558 |
91802 |
930548 |
Some subranges for higher exponents have also been searched but it seems inappropriate to list isolated counts.
I would be happy to forward files to anyone who would like to obtain the lists of primes generated during this search. With the exception of the n £ 1000 range, the file sizes are not particularly large.
I have previously listed the divisors of generalised Fermat numbers with square-free bases less than 100, amongst the range n £ 1000. I am in the process of pushing this search to higher values of n. The current position of this search can always be found by checking the results file. This is ongoing and will always drag behind the enumeration to a degree.