Interesting
Sources of Probable Primes
Joseph
McLean
Primes have always been sought out in many
different forms, most often in those forms that are susceptible to a simple
primality proof. The most obvious examples of these are Mersenne Primes and
Proth primes. However, the Brillhart-Lehmer-Selfridge theorems on primality are
suitable for tackling most primes of the form f(n)±1 where f(n) is
a recursive function of the positive integer n that has a lot of divisors, for
instance the factorial n!, multifactorial n!m, primorial n# and the
compositorial n!/n#. Much investigation has gone into finding ever-larger
primes of this form.
However, in this article, I am more interested
in slight deviations from these, for which no convenient primality proofs are
available, and the best we can expect is that they pass sufficient
pseudo-primality tests that our confidence in full primality is high. Of
course, if the numbers are small enough, then straightforward trial division is
enough to decide on primality. For slightly larger numbers, BLS may still pull
off a result. For numbers of a new hundred digits, a general primality proving
program such as ECPP or PRIMO can be used. In the following, where listed
numbers have been proved prime, this is indicated, as is the number of digits
to the base 10.
In general, we try to consider sequences with a
suitable predisposition, that is, with a form that provides some sort of
initial sieve of small primes. The most obvious sources of such forms involve
factorials and primorials.
Factoprimorials
Factoprimorials are numbers of the form p=n!±n#±1. In this
case, either p+1 or p-1
is divisible by n#, so p is not divisible by any primes up to n, providing a
good initial sieve.
2!+2#+1 = 5 (prime) |
2!+2#-1
= 3 (prime) |
|
|
1 |
3!+3#+1 = 13 (prime) |
3!+3#-1
= 11 (prime) |
|
|
2 & 1 |
4!+4#+1 = 31 (prime) |
4!+4#-1
= 29 (prime) |
4!-4#+1
= 19 (prime) |
4!-4#-1 = 17
(prime) |
2 |
5!+5#+1 = 151 (prime) |
5!+5#-1
= 149 (prime) |
|
5!-5#-1 = 89
(prime) |
3 & 2 |
6!+6#+1 = 751 (prime) |
|
6!-6#+1
= 691 (prime) |
|
3 |
|
|
7!-7#+1
(prime) |
|
4 |
8!+8#+1 (prime) |
8!+8#-1
(prime) |
8!-8#+1
(prime) |
|
5 |
|
|
10!-10#+1
(prime) |
|
7 |
17!+17#+1 (prime) |
17!+17#-1
(prime) |
|
|
15 |
18!+18#+1 (prime) |
|
|
|
16 |
|
|
20!-20#+1
(prime) |
20!-20#-1 (prime) |
19 |
|
|
21!-21#+1
(prime) |
|
20 |
|
23!+23#-1
(prime) |
|
|
23 |
24!+24#+1 (prime) |
|
|
|
24 |
|
26!+26#-1
(prime) |
26!-26#+1
(prime) |
|
27 |
|
35!+35#-1
(prime) |
|
|
41 |
|
47!+47#-1
(prime) |
|
|
60 |
|
82!+82#-1
(prime) |
|
|
123 |
|
|
|
92!-92#-1 (prime) |
143 |
95!+95#+1 (prime) |
|
|
|
149 |
96!+96#+1 (prime) |
|
|
|
150 |
|
100!+100#-1
(prime) |
|
|
158 |
|
|
101!-101#+1
(prime) |
|
160 |
|
|
|
106!-106#-1 (prime) |
171 |
|
|
119!-119#+1
(prime) |
|
197 |
142!+142#+1 |
|
|
|
246 |
|
147!+147#-1 |
|
|
257 |
|
|
172!-172#+1 |
|
312 |
|
183!+183#-1 |
|
|
337 |
|
|
|
266!-266#-1 |
532 |
|
271!+271#-1 |
|
|
544 |
|
|
|
308!-308#-1 |
635 |
|
|
|
343!-343#-1 |
723 |
|
|
409!-409#+1 |
|
893 |
|
492!+492#-1 |
|
|
1113 |
|
|
|
583!-583#-1 |
1361 |
|
|
|
597!-597#-1 |
1400 |
|
|
621!-621#+1 |
|
1467 |
|
708!+708#-1 |
|
|
1713 |
|
|
|
903!-903#-1 |
2279 |
|
|
|
1021!-1021#-1 |
2631 |
1022!+1022#+1 |
|
|
|
2634 |
|
|
1043!-1043#+1 |
|
2698 |
|
1116!+1116#-1 |
|
|
2919 |
1120!+1120#+1 |
|
|
|
2931 |
|
|
1204!-1204#+1 |
|
3189 |
|
|
|
1239!-1239#-1 |
3297 |
|
|
1283!-1283#+1 |
|
3433 |
|
|
|
1314!-1314#-1 |
3530 |
|
1538!+1538#-1 |
|
|
4236 |
1580!+1580#+1 |
|
|
|
4370 |
|
|
1673!-1673#+1 |
|
4669 |
|
|
2003!-2003#+1 |
|
5746 |
|
|
|
2458!-2458#-1 |
7269 |
|
2491!+2491#-1 |
|
|
7381 |
|
4207!+4207#-1 |
|
|
13422 |
|
|
4336!-4336#+1 |
|
13890 |
|
4468!+4468#-1 |
|
|
14371 |
|
|
5773!-5773#+1 |
|
19210 |
|
|
|
6160!-6160#-1 |
20671 |
6942!+6942#+1 |
|
|
|
23656 |
|
8147!+8147#-1 |
|
|
28328 |
|
|
|
9627!-9627#-1 |
34171 |
|
|
|
10649!-10649#-1 |
38265 |
|
|
12913!-12913#+1 |
|
47481 |
|
|
13517!-13517#+1 |
|
49970 |
|
16878!+16878#-1 |
|
|
64022 |
19255!+19255#+1 |
|
|
|
74140 |
19401!+19401#+1 |
|
|
|
74765 |
I re-discovered all the values up to n = 10649.
The values from n = 5773 to 6942 had previously been identified by Mike Oates
in 2003. The values from there up to n = 13517 were identified by Filho, and
the last 3 by Filho & Teixeira, all in 2005.
Defactorials
If n is odd, then n!2 is divisible by n#. If n
is even, then n!2 is divisible by all primes with exponent up to n/2, which
includes all primes up to n/2, that is (n/2)#. We can therefore combine n! and
n!2 in a similar manner to factoprimorials to consider n!±n!2±1 or n!±n!2±2 depending as
n is even or odd, knowing that these numbers have already been subjected to an
initial sieve.
2!+2!2+1 = 5 (prime) |
2!+2!2-1
= 3 (prime) |
|
|
1 |
|
4!+4!2-1
= 31 (prime) |
4!-4!2+1
= 17 (prime) |
|
2 |
6!+6!2+1 = 769 (prime) |
|
6!-6!2+1
= 673 (prime) |
|
3 |
|
|
8!-8!2+1
(prime) |
|
5 |
|
|
14!-14!2+1
(prime) |
|
11 |
|
16!+16!2-1
(prime) |
|
|
14 |
|
|
18!-18!2+1
(prime) |
|
16 |
|
|
28!-28!2+1
(prime) |
|
30 |
|
36!+36!2-1
(prime) |
|
|
42 |
42!+42!2+1 (prime) |
|
|
|
52 |
|
|
|
46!-46!2-1 (prime) |
58 |
|
|
64!-64!2+1
(prime) |
|
90 |
|
94!+94!2-1
(prime) |
|
|
147 |
|
108!+108!2-1
(prime) |
|
|
175 |
|
|
|
130!-130!2-1 |
220 |
|
|
324!-324!2+1 |
|
675 |
|
354!+354!2-1 |
|
|
751 |
|
428!+428!2-1 |
|
|
943 |
604!+604!2+1 |
|
|
|
1420 |
|
|
778!-778!2+1 |
|
1914 |
|
|
882!-882!2+1 |
|
2217 |
1976!+1976!2+1 |
|
|
|
5657 |
5126!+5126!2+1 |
|
|
|
16793 |
|
|
|
6374!-6374!2-1 |
21484 |
|
|
|
8068!-8068!2-1 |
28019 |
|
9878!+9878!2-1 |
|
|
35172 |
Even-numbered defactorials have a simple
divisibility property. Suppose that a prime p divides n!+n!2+1 and
(n/2<)p<n. Then p divides n! but not n!2 and so p must divide n!2+1.
Subtracting 2x(n!2+1) implies that p divides n!-n!2-1. Similarly,
if p divides n!+n!2-1
and p<n then p divides n!2-1
and so also divides n!-n!2+1.
Note that n/2<p is guaranteed by the initial sieve condition. In fact, the
numbers in the above table are all primes, since the form succumbs easily to
BLS.
3!+3!2+2 = 11 (prime) |
3!+3!2-2
= 7 (prime) |
3!-3!2+2
= 5 (prime) |
|
2 & 1 |
5!+5!2+2 = 137 (prime) |
|
5!-5!2+2
= 107 (prime) |
5!-5!2-2 = 103
(prime) |
3 |
7!+7!2+2 = (prime) |
|
7!-7!2+2
(prime) |
7!-7!2-2 (prime) |
4 |
11!+11!2+2 (prime) |
|
|
|
8 |
|
25!+25!2-2
(prime) |
|
|
26 |
|
|
51!-51!2+2
(prime) |
|
67 |
|
|
|
75!-75!2-2 (prime) |
110 |
|
|
87!-87!2+2
(prime) |
|
133 |
|
95!+95!2-2
(prime) |
|
|
149 |
|
|
|
99!-99!2-2 (prime) |
156 |
|
143!+143!2-2 |
|
|
248 |
|
175!+175!2-2 |
|
|
319 |
|
|
|
571!-571!2-2 |
1328 |
|
|
583!-583!2+2 |
|
1361 |
|
919!+919!2-2 |
|
|
2327 |
937!+937!2+2 |
|
|
|
2380 |
1041!+1041!2+2 |
|
|
|
2691 |
|
|
|
1201!-1201!2-2 |
3179 |
1349!+1349!2+2 |
|
|
|
3639 |
|
|
1667!-1667!2+2 |
|
4650 |
1687!+1687!2+2 |
|
|
|
4714 |
|
|
1863!-1863!2+2 |
|
5286 |
1941!+1941!2+2 |
|
|
|
5542 |
|
|
|
5359!-5359!2-2 |
17660 |
|
|
|
5585!-5585!2-2 |
18504 |
|
5697!+5697!2-2 |
|
|
18925 |
5963!+5963!2+2 |
|
|
|
19926 |
|
|
|
6759!-6759!2-2 |
22954 |
|
|
|
6817!-6817!2-2 |
23176 |
|
|
8775!-8775!2+2 |
|
30794 |
8809!+8809!2+2 |
|
|
|
30928 |
|
|
11487!−11487!2+2 |
|
41654 |
Defactoprimorials
We may also consider combining n!2 and n# with
the same initial sieve in operation. Again, since n!2 is odd or even depending
on n, and n# is always even, we consider n!2±n#±1 when n is
even and n!2±n#±2 if n is odd.
2!2+2#+1 = 5 (prime) |
2!2+2#-1
= 3 (prime) |
|
|
1 |
|
4!2+4#-1
= 13 (prime) |
4!2-4#+1
= 3 (prime) |
|
2 & 1 |
6!2+6#+1 = 79 (prime) |
|
6!2-6#+1
= 19 (prime) |
6!2-6#-1 = 17
(prime) |
2 |
|
8!2+8#-1
(prime) |
|
8!2-8#-1 (prime) |
3 |
10!2+10#+1 (prime) |
10!2+10#-1
(prime) |
10!2-10#+1
(prime) |
|
3 |
14!2+14#+1 (prime) |
|
|
|
6 |
16!2+16#+1 (prime) |
|
16!2-16#+1
(prime) |
|
8 |
|
18!2+18#-1
(prime) |
18!2-18#+1
(prime) |
|
9 |
|
22!2+22#-1
(prime) |
|
|
11 |
26!2+26#+1 (prime) |
|
26!2-26#+1
(prime) |
|
14 |
|
28!2+28#-1
(prime) |
|
|
16 |
|
|
|
30!2-30#-1 (prime) |
17 |
|
36!2+36#-1
(prime) |
|
36!2-36#-1 (prime) |
22 |
|
38!2+38#-1
(prime) |
|
|
23 |
42!2+42#+1 (prime) |
|
|
|
27 |
|
48!2+48#-1
(prime) |
|
|
32 |
82!2+82#+1 (prime) |
|
|
|
62 |
|
104!2+104#-1
(prime) |
|
|
84 |
|
|
|
110!2-110#-1 (prime) |
90 |
|
114!2+114#-1
(prime) |
|
|
94 |
126!2+126#+1 (prime) |
|
|
|
107 |
|
|
146!2-146#+1
(prime) |
|
128 |
|
174!2+174#-1
(prime) |
|
|
159 |
|
184!2+184#-1
(prime) |
|
|
170 |
304!2+304#+1 |
|
|
|
313 |
|
|
|
450!2-450#-1 |
501 |
|
|
|
586!2-586#-1 |
686 |
|
588!2+588#-1 |
|
|
689 |
|
652!2+652#-1 |
|
|
778 |
|
|
718!2-718#+1 |
|
872 |
|
|
810!2-810#+1 |
|
1004 |
|
902!2+902#-1 |
|
|
1139 |
2428!2+2428#+1 |
|
|
|
3585 |
|
2658!2+2658#-1 |
|
|
3977 |
|
|
2742!2-2742#+1 |
|
4121 |
|
|
3520!2-3520#+1 |
|
5480 |
|
|
3764!2-3764#+1 |
|
5915 |
|
|
|
4694!2-4694#-1 |
7600 |
|
|
|
4848!2-4848#-1 |
7884 |
|
|
4940!2-4940#+1 |
|
8053 |
|
|
6006!2-6006#+1 |
|
10046 |
|
|
6178!2-6178#+1 |
|
10371 |
|
|
|
6582!2-6582#-1 |
11140 |
|
|
|
8064!2-8064#-1 |
14003 |
8152!2+8152#+1 |
|
|
|
14175 |
|
|
8538!2-8538#+1 |
|
14932 |
|
8918!2+8918#-1 |
|
|
15680 |
|
|
10476!2-10476#+1 |
|
18786 |
10962!2+10962#+1 |
|
|
|
19765 |
Note that even defactoprimorials have an
analogous divisibility property to even defactorials. Suppose a prime p divides
n!2+n#+1 where (n/2<)p<n. Then since p divides n# by definition, we can
subtract 2xn#, so we have that p divides n!2-n#+1.
Similarly if p divides n!2+n#-1
and p<n then p divides n!2-n#-1.
3!2+3#+2 = 11 (prime) |
3!2+3#-2
= 7 (prime) |
|
|
2 & 1 |
5!2+5#+2 = 47 (prime) |
5!2+5#-2
= 43 (prime) |
|
|
2 |
7!2+7#+2 (prime) |
7!2+7#-2
(prime) |
|
|
3 |
|
9!2+9#-2
(prime) |
|
9!2-9#-2 (prime) |
3 & 2 |
|
11!2+11#-2
(prime) |
11!2-11#+2
(prime) |
|
5 & 4 |
|
|
13!2-13#+2
(prime) |
|
6 |
|
15!2+15#-2
(prime) |
|
|
7 |
|
|
17!2-17#+2
(prime) |
|
8 |
19!2+19#+2 (prime) |
19!2+19#-2
(prime) |
|
19!2-19#-2 (prime) |
9 |
|
21!2+21#-2
(prime) |
21!2-21#+2
(prime) |
21!2-21#-2 (prime) |
11 |
|
|
|
23!2-23#-2 (prime) |
12 |
|
35!2+35#-2
(prime) |
|
|
21 |
|
|
|
41!2-41#-2 (prime) |
26 |
|
|
45!2-45#+2
(prime) |
|
29 |
|
|
|
51!2-51#-2 (prime) |
34 |
55!2+55#+2 (prime) |
|
|
|
37 |
61!2+61#+2 (prime) |
|
|
|
43 |
|
93!2+93#-2
(prime) |
|
|
73 |
|
|
|
101!2-101#-2 (prime) |
81 |
|
111!2+111#-2
(prime) |
|
|
91 |
|
117!2+117#-2
(prime) |
|
|
97 |
125!2+125#+2 (prime) |
|
|
|
106 |
133!2+133#+2 (prime) |
|
|
|
114 |
|
|
|
153!2-153#-2 (prime) |
136 |
185!2+185#+2 (prime) |
|
|
|
171 |
|
|
205!2-205#+2 |
|
194 |
|
|
211!2-211#+2 |
|
201 |
|
|
229!2-229#+2 |
|
222 |
|
|
|
245!2-245#-2 |
241 |
|
|
|
247!2-247#-2 |
244 |
303!2+303#+2 |
|
|
|
312 |
|
|
403!2-403#+2 |
|
439 |
|
|
443!2-443#+2 |
|
492 |
613!2+613#+2 |
|
|
|
723 |
|
|
|
721!2-721#-2 |
876 |
|
|
859!2-859#+2 |
|
1076 |
|
|
1011!2-1011#+2 |
|
1302 |
1035!2+1035#+2 |
|
|
|
1338 |
1083!2+1083#+2 |
|
|
|
1410 |
|
|
|
1099!2-1099#-2 |
1435 |
|
|
|
1223!2-1223#-2 |
1625 |
|
|
1281!2-1281#+2 |
|
1714 |
|
|
1319!2-1319#+2 |
|
1774 |
|
|
2437!2-2437#+2 |
|
3600 |
|
|
|
3439!2-3439#-2 |
5337 |
|
3635!2+3635#-2 |
|
|
5684 |
3717!2+3717#+2 |
|
|
|
5831 |
|
3825!2+3825#-2 |
|
|
6024 |
|
|
4121!2-4121#+2 |
|
6556 |
|
4417!2+4417#-2 |
|
|
7094 |
|
|
|
4433!2-4433#-2 |
7123 |
|
4475!2+4475#-2 |
|
|
7199 |
|
4617!2+4617#-2 |
|
|
7459 |
5335!2+5335#+2 |
|
|
|
8786 |
|
|
|
5647!2-5647#-2 |
9370 |
6695!2+6695#+2 |
|
|
|
11355 |
|
7965!2+7965#-2 |
|
|
13809 |
|
|
8815!2-8815#+2 |
|
15477 |
9287!2+9287#+2 |
|
|
|
16411 |
|
|
11841!2-11841#+2 |
|
21548 |
|
12871!2+12871#-2 |
|
|
23655 |
|
|
15337!2-15337#+2 |
|
28771 |
15423!2+15423#+2 |
|
|
|
28951 |
17201!2+17201#+2 |
|
|
|
32695 |
|
|
18779!2−18779+2 |
|
36053 |
18841!2+18841#+2 |
|
|
|
36185 |
|
|
|
19455!2−19455#−2 |
37500 |
Compoundorials
The above concepts can be taken to the logical
conclusion to combine n!, n!2 and n# all at once. The even/odd split is still
in evidence in terms of the deviation value (that is ±2 or ±1), the initial
sieve (up to n or n/2), and the obvious divisibility properties for even n. For
each of the even or odd forms, there are 8 possibilities, and a proliferation
of primes for small n. For n>1000, we have the following probable primes.
1030!-1030!2-1030#-1 |
|
2661 |
|
1085!+1085!2+1085#-2 |
2825 |
1206!-1206!2+1206#+1 |
|
3195 |
|
1369!-1369!2+1369#+2 |
3702 |
|
1497!+1497!2-1497#+2 |
4106 |
|
1533!+1533!2-1533#-2 |
4220 |
1606!-1606!2+1606#+1 |
|
4453 |
|
1779!-1779!2+1779#+2 |
5012 |
|
1841!+1841!2-1841#+2 |
5214 |
|
1845!-1845!2-1845#-2 |
5227 |
|
1853!+1853!2+1853#+2 |
5253 |
|
1863!+1863!2+1863#-2 |
5286 |
1956!-1956!2-1956#-1 |
|
5591 |
|
2523!-2523!2+2523#+2 |
7490 |
|
2881!-2881!2-2881#+2 |
8718 |
2896!-2896!2-2896#-1 |
|
8770 |
|
3049!+3049!2+3049#-2 |
9302 |
3108!-3108!2-3108#-1 |
|
9507 |
|
3291!+3291!2+3291#-2 |
10149 |
|
3301!+3301!2-3301#-2 |
10184 |
|
3471!+3471!2-3471#+2 |
10784 |
|
3539!-3539!2+3539#-2 |
11025 |
|
3647!+3647!2-3647#+2 |
11409 |
3750!+3750!2+3750#+1 |
|
11777 |
|
4143!-4143!2-4143#+2 |
13190 |
4286!-4286!2+4286#+1 |
|
13708 |
|
4387!+4387!2+4387#+2 |
14076 |
4424!+4424!2+4424#-1 |
|
14210 |
4460!-4460!2-4460#+1 |
|
14342 |
|
4533!+4533!2-4533#+2 |
14608 |
|
4973!-4973!2+4973#+2 |
16226 |
5190!-5190!2-5190#-1 |
|
17030 |
|
5217!-5217!2-5217#+2 |
17131 |
|
5597!-5597!2+5597#+2 |
18549 |
5938!-5938!2-5938#+1 |
|
19832 |
|
6159!+6159!2-6159#-2 |
20668 |
|
6705!-6705!2+6705#+2 |
22747 |
9278!+9278!2-9278#-1 |
|
32784 |
|
12763!+12763!2+12763#+2 |
46864 |
|
13201!+13201!2+13201#-2 |
48666 |
Factonentials
In the factoprimorial and defactorial cases, the
second term is a large divisor of the first term. Another example of this can
be found using powers of small primes. We shall restrict ourselves to the forms
n!±2n±1 and n!2±2n±1. These have
very high levels of divisibility, so that very few values have to be tested
fully.
2!+22+1 = 7 (prime) |
2!+22-1 = 5 (prime) |
|
|
1 |
|
3!+23-1 = 13 (prime) |
|
|
2 |
4!+24+1 = 41 (prime) |
|
|
4!-24-1 = 7 (prime) |
2 & 1 |
|
5!+25-1 = 153 (prime) |
5!-25+1
= 89 (prime) |
|
3 & 2 |
|
7!+27-1 = 5167 (prime) |
|
|
4 |
8!+28+1 (prime) |
|
|
8!-28-1 (prime) |
5 |
|
11!+211-1 (prime) |
|
|
8 |
|
|
23!-223+1
(prime) |
|
23 |
|
|
25!-225+1
(prime) |
|
26 |
72!+272+1 (prime) |
|
|
|
104 |
|
|
|
144!-2144-1 (prime) |
250 |
|
167!+2167-1 |
|
|
301 |
|
|
|
208!-2208-1 |
394 |
|
2609!+22609-1 |
|
|
7783 |
|
|
|
4880!-24880-1 |
15883 |
|
|
6217!-26217+1 |
|
20887 |
|
6247!+26247-1 |
|
|
21001 |
|
7841!+27841-1 |
|
|
27133 |
|
|
13537!-213537+1 |
|
50052 |
Defactonentials
Similar to factonentials, we can replace the
factorial with a defactorial.
2!2+22+1 = 7 (prime) |
2!2+22-1 = 5 (prime) |
|
|
1 |
|
4!2+24-1 = 23
(prime) |
|
|
2 |
6!2+26+1 = 113 (prime) |
|
|
|
3 |
8!2+28+1 = 641 (prime) |
|
|
8!2-28-1 = 127
(prime) |
3 |
12!2+212+1 (prime) |
|
|
12!2 -212-1 (prime) |
5 |
20!2+220+1 (prime) |
|
|
|
10 |
|
|
|
28!2-228-1 (prime) |
16 |
56!2+256+1 (prime) |
|
|
|
38 |
|
|
|
2704!2-22704-1 |
4055 |
14656!2+214656-1 |
|
|
|
27349 |
|
|
|
33408!−233408−1 |
68315 |
&
|
|
|
49!2−249−2 |
32 |
193!2−2193−2 |
|
|
|
180 |
These are remarkably rare.
Trefactorials
More recently, I have extended the concept to
investigating numbers of the form n!±n!3±1 & n!±n!3±3.
33!+33!3+1 |
|
|
|
37 |
|
|
54!−54!3+1 |
|
72 |
94!+94!3+1 |
|
|
|
147 |
|
|
|
221!−221!3−1 |
424 |
|
236!+236!3−1 |
|
|
460 |
|
|
242!−242!3+1 |
|
474 |
274!+274!3+1 |
|
|
|
551 |
|
|
|
282!−282!3−1 |
571 |
360!+360!3+1 |
|
|
|
766 |
369!+369!3+1 |
|
|
|
789 |
|
|
|
376!−376!3−1 |
807 |
|
|
|
432!−432!3−1 |
953 |
|
|
453!−453!3+1 |
|
1009 |
|
528!+528!3−1 |
|
|
1211 |
1252!+1252!3+1 |
|
|
|
3337 |
1318!+1318!3+1 |
|
|
|
3542 |
|
|
|
1354!−1354!3−1 |
3655 |
|
|
|
2237!−2237!3−1 |
6524 |
|
|
|
2579!−2579!3−1 |
7681 |
|
|
|
2861!−2861!3−1 |
8649 |
3685!+3685!3+1 |
|
|
|
11545 |
|
|
|
4000!−4000!3−1 |
12674 |
|
5388!+5388!3−1 |
|
|
17768 |
|
5571!+5571!3−1 |
|
|
18452 |
|
|
|
6511!−6511!3−1 |
22006 |
|
|
7134!−7134!3+1 |
|
24394 |
&
|
|
13!−13!3+3 |
|
10 |
|
|
16!−16!3+3 |
|
14 |
|
|
17!−17!3+3 |
|
15 |
23!+23!3+3 |
|
|
|
23 |
|
25!+25!3−3 |
|
25!−25!3−3 |
26 |
|
26!+26!3−3 |
26!−26!3+3 |
|
27 |
|
|
|
28!−28!3−3 |
30 |
|
29!+29!3−3 |
|
|
31 |
32!+32!3+3 |
|
|
32!−32!3−3 |
36 |
|
41!41!3−3 |
|
|
50 |
|
52!+52!3−3 |
|
|
68 |
|
|
71!−71!3+3 |
|
102 |
82!+82!3+3 |
|
|
|
123 |
86!+86!3+3 |
|
|
|
131 |
91!+91!3+3 |
|
|
|
141 |
124!+124!3+3 |
|
|
|
208 |
140!+140!3+3 |
|
|
|
242 |
|
|
148!−148!3+3 |
|
259 |
176!+176!3+3 |
|
|
|
321 |
|
184!+184!3−3 |
|
|
339 |
|
|
|
226!−226!3−3 |
436 |
|
337!+337!3−3 |
|
|
708 |
|
|
|
406!−406!3−3 |
885 |
|
|
433!−433!3+1 |
|
956 |
443!+443!3+3 |
|
|
|
982 |
|
|
|
547!−547!3−3 |
1262 |
|
|
|
553!−553!3−3 |
1279 |
559!+559!3+3 |
|
|
|
1295 |
605!+605!3+3 |
|
|
|
1423 |
|
|
713!−713!3+3 |
|
1727 |
1931!+1931!3+3 |
|
|
|
5509 |
|
|
2867!−2867!3+3 |
|
8670 |
|
|
|
3326!−3326!3−3 |
10272 |
|
|
|
4228!−4228!3−3 |
13498 |
|
|
5386!−5386!3+3 |
|
17760 |
6605!+6605!3+3 |
|
|
|
22365 |
|
|
7876!−7876!3+3 |
|
27270 |
|
|
8210!−8210!3+3 |
|
28574 |
TDFs (Tredefactorials)
Combining single, double and triple factorials,
we obtain numbers of the form n!±n!2±n!3±1
14!+14!2+14!3−1 |
|
11 |
24!+24!2+24!3−1 |
24!+24!2-24!3+1 |
24 |
26!−26!2−26!3+1 |
|
27 |
40!+40!2+40!3+1 |
|
48 |
58!−58!2+58!3+1 |
|
79 |
60!+60!2−60!3+1 |
|
82 |
108!−108!2+108!3-1 |
|
175 |
144!−144!2−144!3+1 |
|
250 |
148!+148!2+148!3+1 |
|
259 |
330!−330!2+330!3+1 |
|
690 |
384!−384!2−384!3−1 |
|
828 |
984!−984!2−984!3+1 |
|
2520 |
1002!−1002!2+1002!3+1 |
|
2574 |
1328!−1328!2+1328!3−1 |
|
3573 |
2536!−2536!2−2536!3−1 |
|
7534 |
2540!−2540!2−2540!3+1 |
|
7548 |
2752!+2752!2+2752!3+1 |
|
8273 |
3612!−3612!2+3612!3+1 |
|
11285 |
4184!+4184!2+4184!3−1 |
|
13338 |
6212!+6212!2−6212!3+1 |
|
20869 |
9528!+9528!2−9528!3+1 |
|
33777 |
To finish, I return to a couple of simpler forms
that have had only cursory investigation until now.
2n±n
This is a conveniently tight form that does not
succumb to BLS. Obviously, we require n to be odd.
21+1 = 3 (prime) |
|
23+3 = 11 (prime) |
23-3 = 5 (prime) |
25+5 = 37 (prime) |
|
29+9 = 521 (prime) |
29-9 = 503 (prime) |
|
213-13 (prime) |
215+15 (prime) |
|
|
219-19 (prime) |
|
221-21 (prime) |
239+39 (prime) |
|
|
255-55 (prime) |
275+75 (prime) |
|
281+81 (prime) |
|
289+89 (prime) |
|
|
2261-261 (prime) |
2317+317 (prime) |
|
2701+701 (prime) |
|
2735+735 (prime) |
|
21311+1311 |
|
21881+1881 |
|
23201+3201 |
|
23225+3225 |
|
|
23415-3415 |
|
24185-4185 |
|
27353-7353 |
211795+11795 |
|
|
212213-12213 |
|
244169- 44169 |
|
260975-60975 |
|
261011-61011 |
288071+88071 |
|
|
2108049-108049 |
|
2182451-182451 |
2204129+204129 |
|
|
2228271-228271 |
|
2481801-481801 |
|
2500899-500899 |
|
2505431-505431 |
2678561+678561 |
|
|
21015321−1015321 |
|
21061095−1061095 |
I re-discovered the values up to n = 108049, and
the remaining large values were all identified by Henri Lifchitz, the last one
in 2013.
2n±n2
This is an obvious extension of the previous
form, which provides a better symmetry. Similarly, we require n to be odd. In
the “+” case, n can be restricted further, since 2n+n2 is
divisible by 3 unless n is divisible by 3, and so we have nº3mod6.
21+12 |
|
23+32 |
|
|
25-52 = 7 (prime) |
|
27-72 = 79 (prime) |
29+92 = 561 (prime) |
29-92 = 463 (prime) |
215+152 (prime) |
|
|
217-172 (prime) |
|
219-192 (prime) |
221+212 (prime) |
|
233+332 (prime) |
|
|
251-512 (prime) |
|
253-532 (prime) |
|
281-812 (prime) |
|
283-832 (prime) |
|
2119-1192 (prime) |
|
2189-1892 (prime) |
|
2219-2192 (prime) |
|
2227-2272 (prime) |
|
2301-3012 (prime) |
|
2455-4552 (prime) |
|
2461-4612 (prime) |
|
2623-6232 (prime) |
22007+20072 |
|
|
22037-20372 |
22127+21272 |
|
|
22221-22212 |
|
22455-24552 |
|
23547-35472 |
23759+37592 |
|
|
25515-55152 |
|
26825-68252 |
|
28303-83032 |
|
29029-90292 |
|
212103-121032 |
229355+293552 |
|
234653+346532 |
|
|
249989-499892 |
|
255525-555252 |
257285+572852 |
|
|
264773-647732 |
|
280307-803072 |
299069+990692 |
|
|
2119087-1190872 |
|
2141915−1419152 |
|
2192023−1920232 |
|
2205933−2059332 |
|
2301683−3016832 |
|
2307407−3074072 |
|
2525667−5256672 |
The last three with '+' are credited to Rob
Binnekamp. Those with '−' and n ≥ 49989 were discovered by Henri
Lifchitz, the lasttin 2017.
Note that numbers of the form 2n±nm
for higher exponents m>2 were considered for this survey and then rejected
as being of less interest (that is, less productive of pseudoprimes).
Last updated: 10/01/2018