Multifactorial
Pseudoprimes
Joseph
McLean
In the preceding article, we considered introducing the multifactorial n!2 in combination with n! and n# in order to produce sequences of numbers with built-in sieves. Now let us focus more directly on multifactorials alone. The standard form n!m±1, when a pseudoprime has been located, succumbs straightforwardly to the familiar Brillhart-Lehmer-Selfridge primality tests, and so has been subject to substantial investigation by many contributors. However, we are not necessarily interested in full primality at this point, and so it behoves us to consider slight deviations from this in our search for interesting pseudoprimes.
First, we remain with the n!2 case. If n is odd, then n!2 is both odd and divisible by n#. The obvious move is to consider the form n!2±2, which is also odd and cannot be divisible by any prime less than or equal to n. In keeping with previous nomenclature, I call these defactos.
1!2+2 = 3 (prime) |
|
1 |
3!2+2 = 5 (prime) |
|
1 |
5!2+2 = 17 (prime) |
5!2-2
= 13 (prime) |
2 |
7!2+2 = 107 (prime) |
7!2-2
= 103 (prime) |
3 |
9!2+2 = 947 (prime) |
|
3 |
|
15!2-2
(prime) |
7 |
|
17!2-2
(prime) |
8 |
|
19!2-2
(prime) |
9 |
21!2+2 (prime) |
|
11 |
23!2+2 (prime) |
|
12 |
27!2+2 (prime) |
|
15 |
|
51!2-2
(prime) |
34 |
57!2+2 (prime) |
|
39 |
|
73!2-2
(prime) |
54 |
75!2+2 (prime) |
|
56 |
|
89!2-2
(prime) |
69 |
103!2+2 (prime) |
|
83 |
|
131!2-2
(prime) |
112 |
|
153!2-2
(prime) |
136 |
169!2+2 (prime) |
|
153 |
219!2+2 (prime) |
|
211 |
245!2+2 (prime) |
245!2-2
(prime) |
241 |
|
333!2-2 |
350 |
|
441!2-2 |
489 |
461!2+2 |
|
516 |
|
463!2-2 |
519 |
695!2+2 |
|
839 |
|
825!2-2 |
1026 |
1169!2+2 |
|
1541 |
|
1771!2-2 |
2494 |
|
2027!2-2 |
2914 |
3597!2+2 |
|
5617 |
3637!2+2 |
|
5688 |
7495!2+2 |
|
12896 |
|
9157!2-2 |
16153 |
|
10875!2-2 |
19589 |
|
20515!2-2 |
39779 |
27743!2+2 |
|
55612 |
28799!2+2 |
|
57962 |
32501!2+2 |
|
66266 |
The pseudoprimes for n
= 7495 & 9157 are credited to Ken Davis in 2003. Those
for n 10875 & 20515 to me, and the larger values to Roberrt
Price, the last in 2015.
Now let’s branch out a bit. Consider n!m where m can be any positive
integer (less than n for good measure). Then n, n-m,
n-2m, etc. is an
arithmetic sequence with difference m, or more precisely -m. Suppose p is
a prime, and p is less than or equal to n/m. Then, by the Chinese Remainder
Theorem, p will divide at least one member of the sequence. Hence n!m is automatically pre-sieved to
n/m. We may then consider deviations d
from n!m such that n!m±d
is odd and such that no odd prime can divide. If n is even, then n!m is even, and we can only
choose d=1, which we have already excluded from consideration here. If n is
odd, then n!m is even when m
is odd and odd when m is even. Hence we consider the form n!m±2
for n odd and m even. The m=2 case is handled above. Let us now consider m = 4.
Since gcd(4,p) = 1 for
all odd primes p, one of the sequence n, n+4, n+8, … ,n+4(p-1) is divisible
by p. Hence if n³4p,
n!4 is divisible by p and we have a sieve to n/4. In
fact, if nºxmod4,
where x is 1 or 3, then n!4 is divisible by all primes
p<n where pºxmod4,
and so the sieve is tighter than n/4. The following is a list of pseudoprimes for n>100.
|
125!4-2
(prime) |
53 |
|
133!4-2
(prime) |
58 |
143!4+2 (prime) |
|
63 |
|
153!4-2
(prime) |
69 |
|
157!4-2
(prime) |
71 |
169!4+2 (prime) |
|
77 |
185!4+2 (prime) |
185!4-2
(prime) |
86 |
|
201!4-2
(prime) |
96 |
|
217!4-2
(prime) |
105 |
|
223!4-2
(prime) |
109 |
235!4+2 (prime) |
|
116 |
259!4+2 (prime) |
|
130 |
|
289!4-2 |
148 |
|
323!4-2 |
169 |
363!4+2 |
|
195 |
365!4+2 |
|
196 |
457!4+2 |
|
256 |
|
469!4-2 |
264 |
493!4+2 |
|
280 |
|
533!4-2 |
307 |
|
567!4-2 |
331 |
573!4+2 |
|
335 |
777!4+2 |
|
479 |
|
821!4-2 |
511 |
|
1001!4-2 |
644 |
1273!4+2 |
|
852 |
1275!4+2 |
|
854 |
1865!4+2 |
|
1325 |
|
1999!4-2 |
1435 |
|
2523!4-2 |
1874 |
|
2533!4-2 |
1883 |
|
2827!4-2 |
2135 |
|
2843!4-2 |
2148 |
3621!4+2 |
|
2831 |
4523!4+2 |
|
3645 |
|
4821!4-2 |
3918 |
5291!4+2 |
|
4353 |
5845!4+2 |
|
4872 |
7185!4+2 |
|
6149 |
|
8153!4-2 |
7089 |
|
8947!4-2 |
7870 |
10183!4+2 |
|
9100 |
|
12739!4-2 |
11693 |
12845!4+2 |
|
11802 |
15057!4+2 |
|
14094 |
16281!4+2 |
|
15378 |
17945!4+2 |
|
17139 |
18771!4+2 |
|
18019 |
|
19353!4-2 |
18642 |
22479!4+2 |
|
22018 |
|
22929!4-2 |
22508 |
27235!4+2 |
|
27244 |
28089!4+2 |
|
28192 |
|
30629!4−2 |
31029 |
31557!4+2 |
|
32071 |
|
31809!4−2 |
32355 |
|
37785!4−2 |
39139 |
39163!4+2 |
|
40719 |
45709!4+2 |
|
48291 |
46329!4+2 |
|
49014 |
52211!4+2 |
|
55914 |
|
74913!4−2 |
83161 |
77779!4+2 |
|
86660 |
|
97411!4−2 |
110913 |
Values with digits > 10000 and up to n =
18771 were discovered by Ken Davis in 2003. Those between n = 22479 & 37785
are credited to me and the larger values are credited to Robert Price, the
latest in 2017. I note that the value for n = 39163 was discovered
independently by me in 2015.
Let us now consider m=6. A slight problem now
arises, that of divisibility by 3. If nº1mod3,
then n!6+2 is divisible by 3, and if nº2mod3, then
divisibility alternates between n!6+2 and n!6-2
depending on n. However, the remainder of the sieve to n/6 is intact. Again, I
list pseudoprimes for n>100.
|
157!6-2
(prime) |
48 |
197!6+2 (prime) |
|
63 |
213!6+2 (prime) |
|
69 |
221!6+2 (prime) |
|
72 |
245!6+2 (prime) |
|
82 |
|
265!6-2
(prime) |
89 |
|
267!6-2
(prime) |
91 |
279!6+2 (prime) |
|
95 |
|
327!6-2
(prime) |
115 |
|
539!6-2 |
208 |
|
555!6-2 |
216 |
|
621!6-2 |
246 |
|
715!6-2 |
290 |
845!6+2 |
|
353 |
|
921!6-2 |
390 |
927!6+2 |
|
393 |
|
979!6-2 |
419 |
|
1633!6-2 |
758 |
|
1821!6-2 |
860 |
2055!6+2 |
|
988 |
|
2259!6-2 |
1102 |
|
2697!6-2 |
1349 |
|
2809!6-2 |
1413 |
|
2863!6-2 |
1444 |
2895!6+2 |
|
1463 |
|
2935!6-2 |
1486 |
3615!6+2 |
|
1885 |
|
4213!6-2 |
2242 |
|
4351!6-2 |
2326 |
5613!6+2 |
|
3104 |
|
5937!6-2 |
3307 |
|
6885!6-2 |
3780 |
|
8743!6-2 |
5113 |
|
10761!6-2 |
6455 |
12753!6+2 |
|
7806 |
|
15159!6-2 |
9468 |
15737!6+2 |
|
9871 |
|
17685!6-2 |
11243 |
17813!6+2 |
|
11333 |
18545!6+2 |
|
11853 |
22629!6+2 |
|
14789 |
47859!6+2 |
|
33869 |
48797!6+2 |
|
34601 |
|
52075!6−2 |
37170 |
|
55147!6−2 |
39591 |
|
68677!6−2 |
50395 |
|
99655!6−2 |
75811 |
All large values up to n = 52075 were discovered
by me, the last in 2014. The largest values were discovered by Robert Price in
2017.
Another issue regarding m=6 is that, purely
because there are less numbers involved in the product n!6,
as n rises, n!6 rises much more slowly that for n!2. This effect applies more
and more as m increases so that particularly large values are difficult to come
by. Some of these are given later in this article.
Returning to the general case of n!m for n odd and m even, we
require our deviation d to ensure that n!m±d is not
divisible by any (small) prime up to n/m. We have until now chosen d=2.
However, it is obvious that d can take any value of 2x for x>0
and retain this property. With a little extra thought, we can obtain an even
more general formula, as follows. Since n!m
is divisible by every prime p up to n/m, any deviation x for which p does not
divide x will preserve the sieve effect. If gcd(m,x)=1
then any primes dividing x will divide n!m±x (as long as x
is no greater than n/m), and so we require gcd(m,x)>1. On the other hand, if gcd(n,x)>1
then there will be a prime that divides both x and n!m±x, and so we
require gcd(n,x)=1.
Obviously, we additionally require that the values for n, m and x guarantee
that the overall formula is odd. We may therefore consider the following
values.
For m=2, x=2y, n odd
For m=3, x=3y, n not divisible by 3
For m=4, x=2y, n odd
For m=5, x=5y, n not divisible by 5
For m=6, x=2y, n odd, or x=3y,
n even and not divisible by 3, or x=6y, n odd and not divisible by 3
For m=3, let us restrict ourselves to x=3. I
list probable primes for n>1000.
|
1039!3-3 |
896 |
|
1045!3-3 |
902 |
|
1190!3-3 |
1050 |
|
1595!3-3 |
1474 |
|
1679!3-3 |
1564 |
|
1772!3-3 |
1665 |
|
1789!3-3 |
1683 |
1952!3+3 |
|
1861 |
2197!3+3 |
|
2132 |
|
2410!3-3 |
2370 |
2428!3+3 |
|
2391 |
|
2920!3-3 |
2953 |
2960!3+3 |
|
2999 |
3430!3+3 |
|
3548 |
4618!3+3 |
|
4975 |
|
5039!3-3 |
5492 |
7478!3+3 |
|
8576 |
|
7919!3-3 |
9147 |
8209!3+3 |
|
9525 |
8422!3+3 |
|
9803 |
9235!3+3 |
|
10873 |
|
10462!3-3 |
12506 |
11107!3+3 |
|
13373 |
|
11846!3-3 |
14373 |
13481!3+3 |
|
16609 |
18194!3+3 |
|
23204 |
19229!3+3 |
|
24678 |
|
23293!3−3 |
30539 |
|
26705!3−3 |
35541 |
|
30781!3−3 |
41598 |
29854!3+3 |
|
40213 |
|
43694!3−3 |
61264 |
46532!3+3 |
|
65667 |
Larger values with n up to 26705 were discovered
by me. Larger values are credited to Robert Price in 2014.
For m=4, let us consider x=4 only. The following
lists pseudoprimes for n>1000.
1023!4+4 |
|
661 |
|
1057!4-4 |
686 |
1107!4+4 |
|
724 |
|
1433!4-4 |
977 |
|
1453!4-4 |
993 |
1517!4+4 |
|
1044 |
|
1519!4-4 |
1046 |
1557!4+4 |
|
1076 |
1625!4+4 |
|
1130 |
|
1759!4-4 |
1238 |
|
3047!4-4 |
2325 |
|
3561!4-4 |
2777 |
|
4151!4-4 |
3307 |
4215!4+4 |
|
3364 |
5297!4+4 |
|
4359 |
6291!4+4 |
|
5294 |
6499!4+4 |
|
5492 |
|
7025!4-4 |
5995 |
7357!4+4 |
|
6315 |
11639!4+4 |
|
10570 |
|
11917!4-4 |
10853 |
|
11971!4-4 |
10908 |
12963!4+4 |
|
11924 |
13989!4+4 |
|
12983 |
|
15295!4-4 |
14343 |
15825!4+4 |
|
14898 |
|
18919!4-4 |
18177 |
|
19449!4-4 |
18745 |
19993!4+4 |
|
19329 |
20535!4+4 |
|
19913 |
|
20765!4-4 |
20160 |
35391!4+4 |
|
36408 |
All but the last were found me on or before
2006. The last value was discovered by Robert Price in 2017.
For m=5, let us restrict ourselves to x=5.
Again, I list probable primes for n>1000 only.
|
1012!5-5 |
522 |
1017!5+5 |
|
525 |
1033!5+5 |
|
535 |
1104!5+5 |
|
578 |
1342!5+5 |
|
725 |
1371!5+5 |
|
743 |
|
1388!5-5 |
754 |
1426!5+5 |
|
778 |
1918!5+5 |
|
1095 |
2146!5+5 |
|
1246 |
|
2207!5-5 |
1287 |
|
2619!5-5 |
1565 |
|
2714!5-5 |
1630 |
3081!5+5 |
|
1884 |
|
3229!5-5 |
1988 |
|
3689!5-5 |
2314 |
|
3967!5-5 |
2513 |
|
3992!5-5 |
2531 |
4263!5+5 |
|
2727 |
|
4588!5-5 |
2964 |
4962!5+5 |
|
3239 |
5112!5+5 |
|
3350 |
|
5704!5-5 |
3792 |
|
6133!5-5 |
4116 |
|
6139!5-5 |
4120 |
6269!5+5 |
|
4219 |
|
6842!5-5 |
4656 |
|
8397!5-5 |
5863 |
9829!5+5 |
|
6997 |
|
10141!5-5 |
7247 |
11494!5+5 |
|
8339 |
|
11831!5-5 |
8612 |
|
15948!5-5 |
12022 |
16671!5+5 |
|
12631 |
17623!5+5 |
|
13438 |
|
18322!5-5 |
14033 |
|
18721!5-5 |
14373 |
|
19004!5-5 |
14615 |
19672!5+5 |
|
15188 |
20572!5+5 |
|
15962 |
|
22177!5-5 |
17352 |
24698!5+5 |
|
19556 |
|
24888!5-5 |
19723 |
|
24922!5-5 |
19752 |
25227!5+5 |
|
20021 |
|
25617!5-5 |
20364 |
|
32265!5−5 |
26295 |
|
33317!5−5 |
27245 |
|
35317!5−5 |
29060 |
|
36041!5−5 |
29719 |
37986!5+5 |
|
31496 |
39176!5+5 |
|
32587 |
39933!5+5 |
|
33283 |
All large values are credited to me.
For m=6, we consider x=6 and then x=3 and x=4
for n>1000.
|
1517!6-6 |
697 |
|
1799!6-6 |
848 |
|
3355!6-6 |
1731 |
12049!6+6 |
|
7326 |
16457!6+6 |
|
10376 |
17143!6+6 |
|
10859 |
17543!6+6 |
|
11142 |
18391!6+6 |
|
11743 |
|
24619!6-6 |
16239 |
25829!6+6 |
|
17127 |
25945!6+6 |
|
17212 |
31307!6+6 |
|
21194 |
34601!6+6 |
|
23675 |
|
40375!6−6 |
28076 |
|
40793!6−6 |
28397 |
41687!6+6 |
|
29084 |
51601!6+6 |
|
36797 |
|
53135!6−6 |
38004 |
&
|
1360!6-3 |
614 |
1426!6+3 |
|
649 |
|
1502!6-3 |
689 |
|
1516!6-3 |
696 |
|
1568!6-3 |
724 |
|
1646!6-3 |
765 |
1682!6+3 |
|
785 |
1928!6+3 |
|
918 |
3596!6+3 |
|
1873 |
|
3628!6-3 |
1892 |
|
3716!6-3 |
1944 |
3796!6+3 |
|
1992 |
|
4048!6-3 |
2143 |
|
7982!6-3 |
4616 |
|
12776!6-3 |
7822 |
15058!6+3 |
|
9398 |
|
18070!6-3 |
11515 |
|
20594!6-3 |
13318 |
25654!6+3 |
|
16998 |
|
29902!6-3 |
20144 |
37330!6+3 |
|
25747 |
|
39632!6−3 |
27506 |
|
52988!6−3 |
37888 |
|
53864!6−3 |
38579 |
|
55610!6−3 |
39957 |
&
|
1025!6-4 |
442 |
1389!6+4 |
|
629 |
1423!6+4 |
|
647 |
1515!6+4 |
|
696 |
1871!6+4 |
|
887 |
2059!6+4 |
|
990 |
2677!6+4 |
|
1338 |
3095!6+4 |
|
1579 |
|
4263!6-4 |
2273 |
|
4365!6-4 |
2335 |
4473!6+4 |
|
2400 |
|
5175!6-4 |
2831 |
|
5655!6-4 |
3130 |
5691!6+4 |
|
3152 |
5927!6+4 |
|
3300 |
8149!6+4 |
|
4724 |
|
9221!6-4 |
5428 |
|
9327!6-4 |
5498 |
|
9681!6-4 |
5733 |
10789!6+4 |
|
6473 |
12171!6+4 |
|
7409 |
14683!6+4 |
|
9137 |
|
19685!6-4 |
12666 |
|
24777!6-4 |
16355 |
26383!6+4 |
|
17534 |
34227!6+4 |
|
23392 |
40945!6+4 |
|
28513 |
All of these are credited to me.
For higher values of m, the growth rates in the
sequence n!m get lower and
lower and so the amount of checking increases. The fastest rate of growth of
course if for m=2, which we have investigated for d=2. Let us broaden this out
To consider d=2y for all y up to a
“reasonable” limit of y=16. For y=4 and y=8 we have the following:
|
105!2-4
(prime) |
85 |
|
171!2-4
(prime) |
156 |
|
243!2-4 |
239 |
|
271!2-4 |
273 |
|
295!2-4 |
302 |
315!2+4 |
|
327 |
|
355!2-4 |
378 |
|
523!2-4 |
599 |
549!2+4 |
|
635 |
|
591!2-4 |
693 |
|
1211!2-4 |
1606 |
2059!2+4 |
|
2967 |
|
3073!2-4 |
4694 |
5543!2+4 |
|
9175 |
6937!2+4 |
|
11819 |
|
11157!2-4 |
20159 |
|
12887!2−4 |
23688 |
|
19825!4−4 |
38294 |
22819!2+4 |
|
44774 |
34523!2+4 |
|
70841 |
&
103!2+8 (prime) |
|
83 |
|
143!2-8
(prime) |
125 |
299!2+8 |
299!2-8 |
307 |
|
307!2-8 |
317 |
341!2+8 |
341!2-8 |
360 |
|
381!2-8 |
411 |
431!2+8 |
|
476 |
445!2+8 |
|
495 |
465!2+8 |
|
521 |
519!2+8 |
|
594 |
|
585!2-8 |
684 |
|
995!2-8 |
1278 |
|
1019!2-8 |
1314 |
|
1027!2-8 |
1326 |
1251!2+8 |
|
1668 |
|
2043!2-8 |
2940 |
2469!2+8 |
|
3654 |
2507!2+8 |
|
3719 |
2549!2+8 |
|
3790 |
|
4301!2-8 |
6883 |
|
6275!2-8 |
10555 |
6817!2+8 |
|
11589 |
8519!2+8 |
|
14894 |
|
11157!2-8 |
20159 |
|
11621!2-8 |
21100 |
|
12315!2-8 |
22515 |
|
17505!2−8 |
33340 |
18983!2+8 |
|
36489 |
|
24771!2−8 |
49045 |
|
30535!2−8 |
61844 |
|
38635!2−8 |
80222 |
38715!2+8 |
|
80406 |
Larger values for n up to 12887 for these two
tables were discovered by me, and above this by Robert
Price.
From now on, I only list numbers that have at
least 10000 digits, as the volume of probable primes greatly increases.
For higher values of y, we have:
6123!2+215 |
|
10267 |
|
6151!2-28 |
10320 |
|
6275!2-23 |
10555 |
6411!2+28 |
|
10814 |
|
6469!2-212 |
10924 |
|
6599!2-213 |
11172 |
6663!2+216 |
|
11294 |
6817!2+23 |
|
11589 |
6895!2+211 |
|
11739 |
6937!2+22 |
|
11819 |
|
7077!2-210 |
12089 |
|
7093!2-210 |
12119 |
7297!2+212 |
|
12513 |
|
7351!2-215 |
12617 |
7495!2+21 |
|
12896 |
|
7743!2-214 |
13377 |
|
7823!2-216 |
13533 |
7899!2+214 |
|
13681 |
|
8123!2-214 |
14118 |
|
8179!2-29 |
14228 |
8197!2+211 |
|
14263 |
|
8357!2-216 |
14576 |
|
8367!2-211 |
14596 |
8481!2+214 |
|
14820 |
8519!2+23 |
|
14894 |
8655!2+210 |
|
15162 |
8835!2+24 |
|
15516 |
|
8861!2-210 |
15568 |
|
8977!2-27 |
15797 |
|
8981!2-28 |
15805 |
|
9069!2-25 |
15979 |
|
9157!2-21 |
16153 |
|
9537!2-213 |
16908 |
|
9789!2-25 |
17410 |
10153!2+210 |
|
18137 |
10283!2+24 |
|
18398 |
10617!2+26 |
|
19069 |
|
10675!2-213 |
19186 |
10699!2+216 |
|
19234 |
|
10875!2-21 |
19589 |
|
11103!2-212 |
20050 |
|
11157!2-22 |
20159 |
|
11157!2-23 |
20159 |
12081!2+213 |
|
|
|
12463!2−25 |
22818 |
|
12479!2−27 |
22851 |
|
12869!2−27 |
23651 |
|
13163!2−216 |
|
14061!2+24 |
|
26112 |
14315!2+27 |
|
26639 |
|
15137!2−25 |
28352 |
15263!2+29 |
|
28616 |
16491!2+29 |
|
31195 |
18967!2+29 |
|
36455 |
|
19661!2−26 |
37942 |
21951!2+24 |
|
42886 |
|
26313!2−25 |
52443 |
|
27499!2−25 |
55070 |
31191!2+28 |
|
63316 |
32455!2+29 |
|
66162 |
|
36095!2−26 |
74416 |
|
37837!2−26 |
78394 |
|
37845!2−26 |
78412 |
38303!2+28 |
|
79461 |
39505!2+27 |
|
82220 |
39967!2+210 |
|
83282 |
41487!2+28 |
|
86786 |
44725!2+27 |
|
94289 |
45369!2+210 |
|
95787 |
47599!2+210 |
|
100991 |
All values up to n = 13163 were discovered by me
with higher values credited to Robert Price. There is some duplication of
entries on the Lifchitz page. Also note that this
list is not exhaustive.
I now push to even higher values of m, running
from m=7 to 12, where we consider all possible values of d£m. For m=7, we
only consider d=7.
18509!7+7 |
|
10138 |
|
18863!7-7 |
10354 |
19286!7+7 |
|
10612 |
|
20470!7-7 |
11340 |
|
22171!7-7 |
12392 |
|
22376!7-7 |
12519 |
|
23195!7-7 |
13029 |
|
25142!7-7 |
14248 |
|
25216!7-7 |
14294 |
|
25604!7-7 |
14539 |
|
26360!7-7 |
15015 |
26939!7+7 |
|
15382 |
26940!7+7 |
|
15382 |
|
30700!7−7 |
17777 |
31039!7+7 |
|
17995 |
|
31356!7−7 |
18198 |
34534!7+7 |
|
20249 |
For m=8, we can consider d=2, 4 or 8.
|
20671!8-2 |
10031 |
|
21539!8-2 |
10500 |
22631!8+8 |
|
11093 |
22753!8+4 |
|
11159 |
23349!8+2 |
|
11485 |
|
24487!8-8 |
12107 |
|
25371!8-4 |
12593 |
|
25371!8-8 |
12593 |
|
26787!8-8 |
13375 |
|
28377!8-2 |
14257 |
|
29147!8-4 |
14687 |
29347!8+2 |
|
14798 |
29477!8+2 |
|
14871 |
|
30149!8-8 |
15247 |
30181!8+2 |
|
15265 |
|
30365!8-8 |
15368 |
|
31369!8-4 |
15931 |
32435!8+4 |
|
16531 |
|
32567!8−4 |
16606 |
32653!8+4 |
|
16654 |
33325!8+8 |
|
17034 |
33461!8+4 |
|
17111 |
|
33625!8−2 |
17203 |
34053!8+4 |
|
17446 |
34133!8+2 |
|
17491 |
|
34171!8−8 |
17513 |
|
35597!8−4 |
18323 |
|
35645!8−2 |
18350 |
36687!8+2 |
|
18943 |
|
36831!8−2 |
19026 |
40985!8+2 |
|
21409 |
43395!8+2 |
|
22802 |
47499!8+2 |
|
25192 |
|
56223!8−2 |
30333 |
|
65299!8−2 |
35759 |
|
66159!8−2 |
36277 |
|
68121!8−2 |
37461 |
|
69339!8−2 |
38197 |
|
70579!8−2 |
38948 |
|
73511!8−2 |
40729 |
|
77745!8−2 |
43310 |
|
94601!8−2 |
53708 |
Those after n = 31369 are credited to Robert
Price, the latest in 2017, who has only searched for d=2 range.
For m=9, we consider d=3 and 9.
|
23758!9-9 |
10407 |
|
23897!9-3 |
10475 |
24622!9+3 |
|
10828 |
|
26528!9-9 |
11762 |
|
26755!9-9 |
11873 |
27265!9+3 |
|
12125 |
|
27410!9-9 |
12196 |
|
28265!9-9 |
12618 |
28412!9+9 |
|
12691 |
28526!9+3 |
|
12747 |
29477!9+9 |
|
13219 |
|
30601!9-9 |
13778 |
|
30775!9-9 |
13865 |
31540!9+3 |
|
14247 |
32221!9+3 |
|
14587 |
32324!9+3 |
|
14639 |
|
32354!9−9 |
14654 |
33137!9+9 |
|
15047 |
|
34790!9−9 |
15879 |
34825!9+9 |
|
15897 |
|
34991!9−3 |
15981 |
|
38530!9−3 |
17776 |
38773!9+3 |
|
17900 |
42028!9+9 |
|
19566 |
42952!9+3 |
|
20041 |
43081!9+9 |
|
20107 |
|
45833!9−3 |
21529 |
|
46282!9−9 |
21761 |
|
48169!9−9 |
22741 |
|
48362!9−9 |
22842 |
48578!9+9 |
|
22954 |
For m=10, we have d=2, 4, 8, or 10 for odd n and
d=5 for even n.
25235!10+2 |
|
10015 |
25247!10+2 |
|
10021 |
|
25453!10-10 |
10111 |
|
25575!10-4 |
10165 |
|
25831!10-10 |
10278 |
|
25969!10-8 |
10339 |
26029!10+10 |
|
10365 |
|
26159!10-4 |
10423 |
|
26164!10-5 |
10425 |
|
26225!10-8 |
10452 |
26329!10+2 |
|
10498 |
26583!10+4 |
|
10610 |
|
27033!10-2 |
10810 |
27675!10+2 |
|
11094 |
27768!10+5 |
|
11136 |
28043!10+10 |
|
11258 |
28402!10+5 |
|
11418 |
28547!10+10 |
|
11482 |
|
28601!10-2 |
11506 |
29463!10+10 |
|
11891 |
|
30082!10-5 |
12168 |
|
31245!10-2 |
12690 |
|
31957!10-2 |
13010 |
31968!10+5 |
|
13015 |
32023!10+10 |
|
13040 |
|
33215!10-4 |
13578 |
|
33289!10-2 |
13611 |
33391!10+2 |
|
13657 |
34302!10+5 |
|
14070 |
|
34961!10−8 |
14369 |
|
35773!10−2 |
14739 |
|
35911!10−8 |
14801 |
36015!10+4 |
|
14849 |
|
36059!10−8 |
14869 |
|
36279!10−10 |
14969 |
36997!10+8 |
|
15297 |
37371!10+10 |
|
15468 |
|
37637!10−10 |
15590 |
|
38539!10−4 |
16003 |
38659!10+8 |
|
16058 |
|
38761!10−8 |
16104 |
38876!10+5 |
|
16157 |
39075!10+2 |
|
16249 |
39897!10+10 |
|
16627 |
40287!10+10 |
|
16806 |
40939!10+10 |
|
17106 |
41195!10+2 |
|
17225 |
|
41226!10-5 |
17239 |
|
42093!10−8 |
17640 |
42189!10+4 |
|
17684 |
42562!10+5 |
|
17856 |
|
43281!10−8 |
18189 |
|
43547!10−10 |
18313 |
43896!10+5 |
|
18475 |
|
45011!10−2 |
18993 |
45989!10+10 |
|
19449 |
54312!10+5 |
|
23360 |
58264!10+5 |
|
25238 |
|
59378!10−5 |
25769 |
|
65188!10−5 |
28554 |
68218!10+5 |
|
30016 |
For m=11, we just have d=11.
|
27832!11-11 |
10149 |
28222!11+11 |
|
10307 |
|
28326!11-11 |
10349 |
|
29473!11-11 |
10814 |
32922!11+11 |
|
12223 |
|
34516!11-11 |
12880 |
35333!11+11 |
|
13217 |
|
38353!11−11 |
14471 |
39411!11+11 |
|
14912 |
|
40101!11−11 |
15201 |
40104!11+11 |
|
15202 |
43683!11+11 |
|
16706 |
43739!11+11 |
|
16729 |
|
44158!11−11 |
16906 |
|
45607!11−11 |
17519 |
|
46771!11−11 |
18013 |
47537!11+11 |
|
18338 |
|
48009!11−11 |
18539 |
|
48553!11−11 |
18770 |
|
48603!11−11 |
18792 |
|
50514!11−11 |
19607 |
|
51886!11−11 |
20195 |
52605!11+11 |
|
20503 |
53371!11+11 |
|
20832 |
53659!11+11 |
|
20956 |
|
54082!11−11 |
21138 |
|
55060!11−11 |
21559 |
60223!11+11 |
|
23794 |
For m=12, d can be 2, 4, 6, 8 or 12 when n is
odd, and 3 or 9 when n is even.
29769!12+8 |
|
10024 |
29881!12+6 |
|
10065 |
29936!12+3 |
|
10086 |
30839!12+12 |
|
10423 |
30933!12+8 |
|
10458 |
31232!12+9 |
|
10570 |
31313!12+12 |
|
10601 |
|
31622!12-3 |
10717 |
31699!12+4 |
|
10746 |
32051!12+12 |
|
10877 |
|
32335!12-8 |
10984 |
|
32356!12-9 |
10992 |
32587!12+6 |
|
11079 |
33225!12+8 |
|
11319 |
33437!12+8 |
|
11399 |
33775!12+12 |
|
11527 |
|
33844!12-9 |
11553 |
|
35917!12−2 |
12337 |
|
36447!12−8 |
12539 |
|
37106!12-9 |
12789 |
|
37417!12−12 |
12908 |
|
38271!12−4 |
13234 |
|
38668!12-9 |
13385 |
39573!12+4 |
|
13732 |
|
39971!12−4 |
13884 |
|
40113!12−8 |
13939 |
40549!12+6 |
|
14106 |
40912!12+9 |
|
14246 |
41349!12+8 |
|
14414 |
|
41723!12−6 |
14557 |
41789!12+2 |
|
14583 |
|
41903!12−2 |
14627 |
42712!12+3 |
|
14939 |
42800!12+3 |
|
14973 |
42982!12+9 |
|
15043 |
43439!12+4 |
|
15219 |
|
43689!12−4 |
15316 |
43985!12+6 |
|
15431 |
|
44176!12-9 |
15505 |
48836!12+9 |
|
17317 |
|
51440!12−9 |
18337 |
The benefits of being able to test more small
numbers as m increase is offset by the slowing of the rate of growth. For m=12
and even n above, the effort in reaching 10000 digits is hugely more expensive
than for lower m.
Last updated: 10/01/2018