Searching for large Sierpinski numbers

In this article's immediate predecessor, I described the results of a survey of Sierpinski numbers, which consisted mainly of enumerating these to a limit of 5*108 and highlighting any issues that were raised along the way. In the current article, rather than build up data gradually, I will take a more global view of the results and matters arising from a survey to the extended limit of 2*109.

The search method is as before, where each possible value of k, not divisible by 3, 5 or 7, is tested for each exponent n from 1 to 1000. If any prime is found for a particular k, that value of k is ignored. All values of k which survive this step are then passed to the program psieve3.exe, which builds up a list of Nash congruences. If at any time, the accumulation of Nash congruences combine to produce a complete covering, then we have a Sierpinski number, and the associated covering set can be extracted from the congruences (though not without the occasional difficulty). Covering sets are labelled, generally according to the order they were first identified.

The complete list of covering sets associated with at least one Sierpinski number under 2*109 is as follows (where P is the product of the primes in the set):

code

modulus

covering set

2P

A

24

{3, 5, 7, 13, 17, 241}

1.1e7

B

36

{3, 5, 7, 13, 19, 37, 73}

1.4e8

C

48

{3, 5, 7, 13, 17, 97, 257}

1.1e9

D

36

{3, 5, 7, 13, 19, 73, 109}

4.1e8

E

36

{3, 5, 7, 13, 19, 37, 109}

2.1e8

F

36

{3, 5, 7, 13, 37, 73, 109}

8.0e8

G

72

{3, 5, 7, 13, 17, 19, 109, 433}

4.2e10

H

48

{3, 5, 7, 17, 97, 241, 257}

2.2e10

I

48

{3, 5, 7, 13, 17, 257, 673}

8.0e9

K

72

{3, 5, 7, 13, 17, 19, 37, 433}

1.4e10

L

48

{3, 5, 7, 13, 17, 97, 673}

3.0e9

M

48

{3, 5, 13, 17, 97, 241, 257}

4.0e10

N

72

{3, 5, 7, 17, 19, 37, 109, 241}

6.6e10

P

72

{3, 5, 7, 17, 19, 37, 73, 241}

4.4e10

R

72

{3, 5, 7, 13, 17, 37, 109, 433}

8.1e10

S

72

{3, 5, 7, 13, 17, 19, 73, 433}

2.8e10

T

60

{3, 5, 7, 11, 13, 41, 61, 151, 331}

3.8e12

U

60

{3, 5, 7, 11, 13, 31, 41, 61, 331}

7.7e11

V

72

{3, 5, 7, 17, 37, 109, 241, 433}

1.5e12

W

72

{3, 5, 7, 13, 19, 109, 241, 433}

5.9e11

X

60

{3, 5, 7, 11, 13, 31, 41, 61, 151}

3.5e11

Y

48

{3, 5, 7, 13, 97, 241, 673}

4.3e10

Z

72

{3, 5, 13, 17, 19, 37, 109, 241}

1.2e11

AA

48

{3, 5, 7, 17, 97, 257, 673}

6.0e10

AB

48

{3, 5, 13, 17, 97, 241, 673}

1.0e11

AC

72

{3, 5, 7, 13, 19, 37, 241, 433}

2.0e11

AD

72

{3, 5, 7, 13, 37, 73, 241, 433}

7.7e11

AE

144

{3, 5, 7, 13, 17, 19, 73, 97, 577}

3.6e12

AF

72

{3, 5, 7, 17, 19, 73, 109, 241}

1.3e11

AG

72

{3, 5, 7, 13, 17, 37, 73, 433}

5.4e10

AH

144

{3, 5, 7, 13, 17, 19, 73, 257, 577}

9.5e12

AI

72

{3, 5, 7, 13, 17, 73, 109, 433}

1.6e11

AJ

48

{3, 5, 7, 13, 97, 241, 257}

1.6e10

AK

72

{3, 5, 7, 17, 37, 73, 109, 241}

2.5e11

AL

72

{3, 5, 7, 13, 19, 73, 241, 433}

4.0e11

AM

72

{3, 5, 7, 17, 19, 37, 241, 433}

2.6e11

AN

60

{3, 5, 7, 11, 13, 31, 41, 61, 1321}

3.1e12

AP

48

{3, 5, 7, 17, 241, 257, 673}

1.5e11

AR

60

{3, 5, 7, 13, 31, 41, 61, 151, 331}

1.1e13

AS

72

{3, 5, 13, 17, 19, 73, 109, 241}

2.4e11

AT

180

{3, 5, 7, 11, 13, 19, 37, 61, 151, 181, 631}

2.2e16

AU

72

{3, 5, 13, 17, 19, 37, 73, 241}

8.2e10

AV

48

{3, 5, 7, 17, 97, 241, 673}

5.6e10

AW

60

{3, 5, 7, 11, 13, 31, 61, 151, 1321}

1.1e13

AX

72

{3, 5, 7, 17, 19, 73, 241, 433}

5.2e11

AY

144

{3, 5, 7, 17, 37, 73, 97, 109, 257}

2.6e13

AZ

72

{3, 5, 13, 17, 37, 73, 109, 241}

4.7e11

BA

48

{3, 5, 13, 17, 97, 257, 673}

1.1e11

BB

180

{3, 5, 7, 11, 13, 19, 31, 41, 73, 181, 631}

6.0e15

BC

60

{3, 5, 7, 11, 13, 31, 41, 151, 331}

1.9e12

 

The letter J is missing from this list for historical reasons, as it was once used to explain the concept of overlaps (Sierpinski numbers belonging to more than one Keller cycle).

The above list includes 12 of the 15 available covering sets of modulus 48, but surprisingly only 7 of the 23 available covering sets of modulus 60. No Sierpinski numbers of modulus 96 occur within the current limit.

The Keller cycle produced by the Keller iteration k ® (2k+P) mod 2P (where P is the product of the primes in the covering set) is a closed loop of length equal to the modulus of the covering set.

For a given covering set, once the 2P limit is reached, there can be no more Keller cycles and so the number of these is finite. Additionally, the concept of the flip cycle has already been introduced. Amongst other things, this guarantees that for any covering set whose constituent primes have order modulo 2 that are not all even or not all odd, there must be an even number of Keller cycles. To the current search limit of 109, this has been verified to be true for covering sets A, B, C, D, E and F.

The current allocation of covering sets to Keller cycles is as follows:

set

modulus

# cycles

status

A

24

2

(complete)

B

36

4

(complete)

C

48

2

(complete)

D

36

4

(complete)

E

36

4

(complete)

F

36

4

(complete)

G

72

4

 

H

48

2

 

I

48

2

 

K

72

4

 

L

48

2

 

M

48

2

 

N

72

3

 

P

72

4

 

R

72

3

 

S

72

4

 

T

60

2

 

U

60

2

 

V

72

1

 

W

72

1

 

X

60

12

 

Y

48

2

 

Z

72

2

 

AA

48

2

 

AB

48

1

 

AC

72

2

 

AD

72

1

 

AE

144

1

 

AF

72

3

 

AG

72

4

 

AH

144

1

 

AI

72

1

 

AJ

48

2

 

AK

72

2

 

AL

72

2

 

AM

72

2

 

AN

60

4

 

AP

48

1

 

AR

60

1

 

AS

72

1

 

AT

180

1

 

AU

72

1

 

AV

48

1

 

AW

60

2

 

AX

72

1

 

AY

144

1

 

AZ

72

1

 

BA

48

1

 

BB

180

1

 

BC

60

1

 

 

 

114

 

 

I have no explanation as yet for the high incidence of cycles with covering set X.

There are 13394 distinct Sierpinski numbers in the range considered, including 141 overlaps.

This includes only four values, namely 308914459, 1319709979, 1554424697 and 1905955429 that are divisible by 7.

The smallest Sierpinski numbers for each of the moduli identified so far are:

modulus

smallest Sierpinski number

24

271129

36

78557

48

327739

60

169073869

72

1777613

144

516108143

180

1143502909

 

One value, namely 987152869, is the base value for two distinct Keller cycles, both of modulus 60. This is the only occurrence of such in the range considered.

My previous numbering of Keller cycles was based on the order in which they were found. However, the cases of the Sierpinski number divisible by 7, and the increasing number of overlaps, sometimes means that in order to retain a rising sequence, some re-ordering has to take place every now and then. To avoid this, I have simply listed the base values in increasing order.

The full list of Keller cycle base values, with associated covering sets, is as follows:

sequence

base number

modulus

covering set

factorisation

1

78557

36

B

17*4621

2

271129

24

A

prime

3

271577

24

A

59*4603

4

322523

36

F

prime

5

327739

48

C

prime

6

934909

36

D

prime

7

1290677

36

E

137*9421

8

1777613

72

G

29*61297

9

2510177

36

B

167*15031

10

5455789

48

C

59*89*1039

11

5841947

36

E

271*21557

12

6828631

36

D

23*337*881

13

8184977

36

B

prime

14

8959163

36

E

prime

15

10306187

36

E

prime

16

11206501

48

H

prime

17

11822359

36

D

prime

18

12413281

36

F

17*191*3823

19

12756019

36

B

prime

20

15273751

48

I

prime

21

17220887

36

D

3709*4643

22

22024609

72

K

1303*16903

23

24885199

48

L

113*191*1153

24

27862127

36

F

29*960763

25

36029731

72

G

71*507461

26

37158601

48

M

prime

27

41134369

48

L

prime

28

51612259

72

N

149*346391

29

51889823

72

P

2347*22109

30

56191673

72

AU

79*711287

31

57816799

36

F

53*1090883

32

59198569

72

K

prime

33

105885947

72

R

3181*33287

34

108628343

72

S

151*719393

35

115281169

72

K

311*370679

36

146053577

72

G

4721*30937

37

155223473

72

S

37*4195229

38

156701453

72

P

3931*39863

39

169073869

60

T

53*163*19571

40

174329011

60

U

59*257*11497

41

210465533

72

P

181*1162793

42

211062227

72

V

prime

43

212497043

72

W

11*19317913

44

213578567

48

I

127*1681721

45

240936503

72

K

1129*213407

46

266142407

60

X

23*347*33347

47

278770729

48

Y

2551*109279

48

292099127

60

X

37*2659*2969

49

297988073

60

X

prime

50

308914459

72

Z

7*41*101*10657

51

332320309

60

X

292*73*5413

52

341371831

48

AA

2711*125921

53

359292259

48

AB

131*2742689

54

365928503

72

AC

347*1054549

55

369699767

72

R

43*8597669

56

389737669

48

AP

prime

57

478078081

48

AA

13*412*131*167

58

482420221

72

G

71*6794651

59

488303521

60

X

prime

60

497369479

60

X

19*683*38327

61

510877279

72

AD

11*79*587891

62

516108143

144

AE

prime

63

563461069

72

AF

97*1051*5527

64

577256123

72

AG

43*13424561

65

597875869

48

H

19*23*1031*1327

66

605248493

144

AH

2351*257443

67

613997417

48

AJ

11*673*82939

68

615884447

72

P

1523*404389

69

620629981

72

AI

3461*179321

70

627253343

72

N

prime

71

689546903

72

AK

277*2489339

72

693557633

72

AL

211*3287003

73

710530043

60

X

7507*94649

74

757599167

72

N

13*58276859

75

764612281

48

AJ

17*557*80749

76

769883761

72

S

23*5449*6143

77

832047023

72

R

17047*48809

78

839316707

60

X

17*1109*44519

79

844627607

72

AM

1901*444307

80

879092101

48

Y

1109*792689

81

914079949

60

AN

19*3491*13781

82

974552641

60

AN

151*379*17029

83

987152869

60

U

337*2929397

84

987152869

60

AR

337*2929397

85

1017439067

48

M

41*24815587

86

1021957141

72

AS

prime

87

1038777953

72

S

prime

88

1051180381

72

AG

prime

89

1077331111

60

AN

prime

90

1077974903

60

AN

6637*162419

91

1088472887

72

AZ

59*199*92707

92

1143502909

180

AT

17*239*431*653

93

1156418821

60

X

59*19600319

94

1161643607

72

AG

439*2646113

95

1181603461

72

AG

107*929*11887

96

1269436171

48

AV

23*55192877

97

1316626321

60

T

73*18035977

98

1329539273

72

AM

35461*37493

99

1366677863

72

Z

20269*76427

100

1373855461

72

AC

11*43*2904557

101

1452979757

60

AW

prime

102

1460644561

60

X

prime

103

1471655687

72

AL

79*193*263*367

104

1502556901

72

AX

101*14876801

105

1550990453

72

AF

61*4967*5119

106

1591804639

60

X

17*37*73*34667

107

1642059527

72

AK

prime

108

1644987931

72

AF

499*3296569

109

1695587059

144

AY

prime

110

1828217513

60

X

677*2700469

111

1840951877

48

BA

2467*746231

112

1850694047

180

BB

prime

113

1945610987

60

BC

prime

114

1946251501

60

AW

prime

 

Sometimes because of an overlap, a non-base value is identifed before a base value for certain Keller cycles. This explains the occasional inconsistency in the labelling of covering sets (e.g. AJ before AI, the positioning of AP, etc.).

I have created a comprehensive list of every Sierpinski number to the limit of 109. In this list, individual Sierpinski numbers are labelled according to their position in the associated Keller cycle, with base (or smallest) values given an index of 0. Generated values, that is, Sierpinski numbers obtained by using the open iteration k ® (k+2P) are not individually labelled, but simply identified by the code of their covering set.

 

URL : www.glasgowg43.freeserve.co.uk/siernums.doc