Sierpinski's Problem to One Million

 

Joseph McLean

 

Sierpinski's Problem is to remove as many odd k from consideration as Sierpinski numbers by finding primes of the form k.2n +1, if necessary by pushing n to very high limits, and as a by-product, locating some very large primes in the process. For convenience, I make the following definitions :

 

A Keller prime is a prime of the form k.2n +1, where k is odd, and for which none of the numbers k.2m +1 for 0 < m < n is prime.

 

The Keller prime for k, k being odd, is the smallest prime of the form k.2n +1, with n > 0.

 

I have previously considered all odd k between 78558 and 105. Of these, only 3 values of k still do not have a known Keller prime.

 

As a wholesale extension, I will now consider all odd k between 1 and 106. Again, I only consider values of k for which there is no prime of the form k.2n +1 for n £ 1000. A detailed breakdown of Keller prime counts for n £ 1000 is available on request. The counts of surviving k values, broken down into ranges of x.105 to (x+1).105 are as follows :

 

x

k

0

247

1

269

2

271

3

298

4

298

5

310

6

302

7

318

8

303

9

315

Total

2931

 

The Nash weight of each of these was calculated to give some idea of the relative difficulty of searching. Additionally, given the nature of the values involved, this is a convenient method of obtaining values with Nash weight less than 100. These are useful when searching for very large primes. Nash weights are split as follows :

 

x

w = 0

<100

<200

<300

<400

<500

<600

<700

<800

<900

<1000

others

totals

0

1

11

40

58

49

41

21

11

7

6

1

1

247

1

0

6

40

76

51

44

27

13

7

3

2

0

269

2

2

10

52

65

55

38

23

8

10

4

2

2

271

3

2

10

49

85

64

35

27

12

8

1

2

3

298

4

1

6

46

78

70

45

27

14

7

2

2

0

298

5

1

10

46

81

61

54

25

20

5

4

2

1

310

6

1

7

48

59

73

51

28

18

9

4

3

1

302

7

0

7

46

78

69

50

29

19

9

3

3

5

318

8

0

6

48

65

74

46

28

16

10

5

4

1

303

9

3

5

51

75

63

47

27

21

12

5

3

3

315

tot

11

78

466

720

629

451

262

152

84

37

24

17

2931

 

A Nash weight of zero indicates a Sierpinski number. These, with covering sets, are :

 

78557  - {3, 5, 7, 13, 19, 37, 73}

271129 - {3, 5, 7, 13, 17, 241}

271577 - {3, 5, 7, 13, 17, 241}

322523 - {3, 5, 7, 13, 37, 73, 109}

327739 - {3, 5, 7, 13, 17, 97, 257}

482719 - {3, 5, 7, 13, 17, 241}

575041 - {3, 5, 7, 13, 17, 241}

603713 - {3, 5, 7, 13, 17, 241}

903983 - {3, 5, 7, 13, 17, 241}

934909 - {3, 5, 7, 13, 19, 73, 109}

965431 - {3, 5, 7, 13, 17, 241}

 

For each of the k with a Nash weight greater than zero, the search limit was initially pushed up to 4000. This removes more than half of the values, leaving, for each subrange :

 

x

k

0

128

1

134

2

149

3

146

4

133

5

151

6

142

7

138

8

148

9

144

Total

1413

 

These counts include Sierpinski numbers.

 

For each of these k, the search limit was then pushed up to 10000, leaving, by subrange :

 

x

k

0

88

1

85

2

102

3

96

4

90

5

95

6

94

7

85

8

100

9

93

Total

928

 

The remaining k are then treated individually with no common search limit. If a Keller prime is found, the search will generally be halted immediately, unless the Nash weight is low. In this case, the search for large Robinson primes takes over, as explained elsewhere.

 

In 2002, a distributed project known as Seventeen or Bust (SB) was set up by Louis Helm, David Norris & Michael Garrison to tackle the then 17 gaps in the table for k < 78557. In 2010, after having found 11 large Keller primes, the original project merged with Primegrid, a much more comprehensive project first set up by Rytis Slatkevičius, and which uses the distributed software BOINC. With Primegrid's help, another prime was found for k = 10223 in 2016.

 

In 2003, the Prime Sierpinski Project (PSP) was set up by Harsh Aggarwal in order to find primes for the then 29 gaps between 78557 & 271129 for which k is itself prime. This closed 18 gaps before merging with Primegrid.

 

The three projects are now combined within Primegrid to search all gaps up to 271129. There are currently 5 values in SB remaining with k < 78557, 9 remaining in PSP. The values 22699 and 67607 are shared between these. In addition, another 8 non-prime values of 78557 < k < 271129 are remaining, the most recent value removed being 168451 in 2017 (see reference), 193997 in 2018 (see reference), 99739 in 2019 (see reference) & 202705 in 2021 (see reference).

 

For a comprehensive view of the recent searches for k < 271129, see Wilfrid Keller's ProthSearch page.

 

The following is a list of all k that have no Keller prime up to n = 10000, together with their Keller primes if known. Sierpinski numbers are marked with asterisks. An up-to-date list of factors is available in text form.

 

3061   33288

32161   43796

54767   1337287

78181   22024

4847   3321063

33661   7031232

55459

78557   *****

5297   50011

34711   10464

59569   390454

79309

5359   5054502

34999   462058

60443   95901

79817

5897   22619

36983   38573

60541   176340

80839   15030

7013   126113

37561   16604

62093   18353

81269   12979

7651   25368

39079   26506

62761   15064

84409   38070

8423   55157

39781   176088

63017   53195

85013   699333

10223   31172165

40547   12983

64007   26015

85711   12696

13787   53135

44131   995972

65567   1013803

86701   17768

14027   40639

44903   17913

67193   16249

86747   42051

16817   42155

46157   698207

67607

86869   11542

18107   21279

46187   104907

67759   10402

87743   212565

19249   13018586

46471   96640

69107   16599

89059   33834

20851   10672

47897   61871

69109   1157446

89225   92067

21181

48833   167897

71417   26807

90527   9162167

22699

49219   16102

71671   28884

91549

24737

50693   32753

74191   20340

93617   17587

25819   111842

51917   18031

74269   167546

94373   3206717

27653   9167433

53941   36944

75841   31220

98431   15880

27923   158625

54001   16652

76759   17446

98749   1045226

28433   7830457

54739   14282

77899   43194

99739   14019102

 

101869   77002

132439   23158

156889   65082

181639   27042

101911   10560

134131   19248

159503   540945

181921   148432

102259   19070

135887   32319

161041   7107964

182749   14890

102263   52853

137269   21958

161509   17154

183091   43984

105857   49155

137401   40956

161957   727995

183347   116399

106853   50061

138199   74670

163187

184609   23130

107929   1007898

139201   14752

163463   10069

185449   435402

110941   12340

142099   70802

165499   79638

185993   164613

112097   17539

145609   23798

167551   26092

187681   573816

114751   11064

146761   56816

167957   417463

190999   54478

115561   91548

147143   16973

168451   19375200

191537   34067

117557   51511

147391   120616

168587   545971

193801   26344

118069   27078

147559   2562218

169639   31018

193997   11452891

118081   145836

149183   1666957

170399   17995

196307   50267

118249   80422

151945   62876

172127   448743

197753   73745

122149   578806

152183   20333

172157   71995

198113   267005

123287   2538167

152267

173633   16177

198647   178863

128239   88330

153169   30478

173933   340181

198677   2950515

128449   109130

153263   21309

177421   69880

199037   101723

128789   31049

154801   1305084

177803   28653

 

130337   11563

155357   79679

179581   117980

 

131179

156511

179791   331740

 

 

200749

225679   620678

260251   14556

282049   21634

201407   20247

225931

261203   354561

283741   32592

202705   21320516

227723

261917   704227

284843   13517

203749   13014

227753   91397

263329   406934

285473   530921

203761   384628

229673

263927   639599

285601

203941   23004

231797   66503

264451   11940

286037

206821   22868

235351   13048

264977   26395

286051   13856

208381   463068

235607   60635

265711   4858008

286579   33842

209611

237019

267893   12237

287003   23169

210917   16251

237413   267149

268021   27844

287393

211195   3224974

238411

269041   10668

287509   17362

212671   15816

239063   21761

269153   12377

287899   223886

214519   1929114

240211   93184

270557   111807

288151   73752

214583   25225

240713   11497

271129   *****

289171

216751   903792

241489   1365062

271577   *****

289939   48286

218447   12667

244609   12050

272341

290281   61872

219259   1300450

246053   44673

273631   30340

291979   65182

220639   29650

247099   484190

273679   1052058

293723   16517

222113

250163   198453

274699

294181

222169   18338

250463   1316921

277217   72227

294241   184040

222361   2854840

252181   149684

278209   25518

297257   28211

222379   12842

255811   140148

278837   10031

297317   54755

223127   50959

256787   11455

278843   51801

297617   60187

224027   273967

258317   5450519

279361   1613712

299239   98714

224657   36391

258541   25308

279767

 

225077   20047

259733   29973

281543   440853

 

 

300649   23846

328703   17949

356599   15234

376879   13946

300661   22084

329221   19508

356809   35922

381811   17124

302701   71716

331883   119945

356971   156572

381991   14224

303001   12868

332093   18349

357017   332367

382247

303197   29047

334519   10902

357271

382849   15598

305063

335299   78574

359551   111552

383717   325171

305147   1030527

335453   28633

359747   11235

383843   87973

305363   22385

335957   30331

359933

385313   142989

305807   12511

336143   49353

360331

385789   15658

306893   117721

336923   12649

362281   11172

388561   16956

307877   27435

337111   229176

362881

389401   171604

308237   48491

337651   31492

363917

389581   75348

308423   395337

340171   31976

364969   98546

390533   13761

310339

340441

365033   23121

391681   52736

311267   89215

340471   128256

365221

392033

311573

340759

365867

393091   16204

312121   1109856

348169   17166

366467   88163

393497   255283

312469   64970

348353   19585

366953

394429   16626

312863   293881

348587   99519

368299

396203   480729

315409   12294

350689   250850

369497   183079

397309   296070

322523   *****

351167

371027   103775

398089   11794

324169   15802

352217   26827

374093   36925

398597   34779

327679   24046

353239   12906

376141   87980

399481   48792

327739   *****

354203   95549

376463   13197

399617   340955

 

400613

427339   78174

450589   67886

475817   14767

401131   37932

427517   82787

451051   29360

479783

401371   62400

428387   21123

451351

480863   25785

402407   34875

428657   720223

451975   11650

481727   883059

404177   10511

430303   87694

452003   48185

482719   *****

408379   27854

430727   88875

452119

483233   48389

409279   27662

432257   12203

452131   18836

483661   14088

411953   78929

432983   259453

452371   190272

484763

412081   145336

433261   11652

454159   24158

487681   19180

412367   25779

433457

456211   325780

487819   27486

412591

437933   51817

456347   50039

488341   466940

413537   92055

438541   60832

457217

488581   27344

413873   32701

438773   11357

459893   11377

488641   13804

415313   26481

440837   24831

462829

488843   18493

415427   50571

441923   774725

464929   59426

489977   49299

415523   11393

443701   30008

465407   159915

491147

418487   10771

445373   16377

467543   21185

492953   260957

418591

446509   557118

467963   132769

495979   480286

419093   42161

446633   107905

469073   104969

498107   22483

420113   524009

447061   1206128

470477   17471

498781   557856

422491   85556

447079   50514

470693   35533

499561

423083   23817

447271   10856

473567

 

425149   80674

450139   54914

475549   12194

 

 

501107

529759   10922

554659   18470

574907   14395

501143   113609

532703

556667   86543

575041   *****

502613

533213   11045

556697   13371

575539   431950

504199   37794

536329   27362

557693   117549

575791   10760

506749   574746

536779   67590

559051   33872

578689   66070

507743   30133

536839

559549   25158

583189

508217   16343

538313   66301

561769

583441   14328

509101   14952

538943

562487   18603

583561   10724

510893   556521

540977   188027

564511   82868

583939   12290

515161   17832

541877   82575

565681   14104

587417   10983

515357

541939   16522

566011   16464

588317

515611   15256

542093   11177

566569

589021

517651   204528

544433   16805

567587   18935

590033

517883   14533

545401

568067   107603

591323   13477

517913

545959   30014

569581   11572

593417   43043

518671

546529   264498

570601   65040

593689   12030

522001   39244

548033

570923   207189

594151   22264

523547   25203

548869   304442

571969   10262

596959   22294

523669   202714

550429   12894

572029   52890

597211   26912

524663   423169

551071   25260

572213   66409

597323   21949

525409   98942

552203   57841

572491   37860

599003

527791   51192

552593   24517

572507   133971

599011

528139   12050

553159

573271   42820

599513

529157   22171

554573   305373

574061   13317

 

 

602537   19939

621953   151469

652291   27960

678739   16638

603593   12221

624139   53814

653063   899301

680597   10399

603713   *****

624511   962636

653693   93457

680851   741248

603767

626303

654083   217533

682141   36628

604189   500578

626419   211622

655367   16171

682667   15955

606199

629089   11966

656123

683087   18563

607801   190960

629149   52250

656753

684977   14543

608179   32854

630121

659237   11295

686479   372062

609227

632663

662345   10099

687347   12087

609769   879034

633197   73171

662899   42658

688819   36538

610097   330651

633407   16627

663827   65447

689281   17724

612263   112221

633481

665101   10116

692063   20293

612773   51941

633841   26868

665423   566441

692431   56560

614617   21150

634441   14928

667861

693769   247742

615151   800316

637501   20440

670309   520410

694879   169326

616367   30915

639827   32291

670969   36346

694891   33428

618379   143758

644333   23401

672481   10896

694973

618889   15574

646411   23372

673009   60186

695659   10378

618893   11845

646427   67667

673667   11963

695911   28156

619013   849281

646757   20963

674477

696323   15057

619399   150478

646937   23223

675559   23858

696661   134472

619403   76141

648751

678047   74863

697831   12476

620063   15825

651661   17268

678109   54994

 

621437   16455

652067   12155

678173

 

 

700141   11572

724351   675612

754939   10062

777559

700339   21630

725483   37421

756139   28594

778021   55132

700637   14795

730831   13272

757343

783019   235798

701123   57057

731041   21884

758243   161705

784159   11310

701357   532979

733193   22265

759653   154085

785209   37266

702707

734147   1047447

760283   13729

787489   19634

703643

734753   77481

760583

787981   36844

706627   18322

735287   10883

761749   716354

791273   14557

708263   20673

736249

762227   325531

791491   17468

709187   30675

736999   10026

762769   188586

791867   13387

710603   12513

741301   14780

766531

793051   14984

711721   13116

743357   860491

766801

793561   19576

711833

745337   27295

769343   1230661

793817   106719

714563

745673   45969

769861   41364

794867

715531   178144

747379   49742

770867   14975

795983

717001   58936

749447   1036639

770899   25346

796493   17745

718463   199345

749971   843268

771977   21339

797131   39472

718849

750083   684961

772403   13277

797903   26677

719611   79296

751103   26481

772969   26754

799951   13500

720121   86960

751613   31745

774977   261235

 

721141

751999

775969   181806

 

721969   250898

753047   16115

777503   22493

 

 

801349   27426

822083   670761

846857   453343

877583   17521

801923   690713

822631   11424

850337   11307

877997   21395

802367   47495

823969

851537   18295

878029

802493   24341

826201

852019

879049

802613

829013   457421

853817   23795

879497

804019   25462

829643

855017   12863

879919   23650

804173   22961

829681   13840

855949   16878

881537

804541   50676

831571   10492

856043

884723

804691   64628

833179   387618

856369   15350

885077   15891

804863   18045

835667   18907

856607   185727

885233   13625

805321   40024

835733   64485

858079

886699   14346

807203   11769

836161   69692

858527   14187

887153

808981   34548

836209   225602

859523   14629

888001   33892

810949   98090

838081   51712

861083   40441

889187   52975

811247   15635

838157   12847

861437   22007

889727   391475

812717   29091

838441   19248

863431   98416

890333   18561

812881   663152

840811   205948

865549   42098

892247   219359

813707   10567

841757   56951

867271

892249   141518

815491   128160

842393   44681

867443   57845

894353   26713

816353   20041

843079

868531   27712

894409

817021   22584

843317   38771

870061

894827

817403   43897

843811   39228

872119

895579

818551   112120

844703   15445

873227   10243

895823   495837

819437

846347

875447   10027

896851   31308

821071   12656

846737   25751

876529   43242

899449

 

900317   29263

928997   145355

957977

974483   69065

901067

930079   61386

958201   18868

976523   64801

903211   26344

931517   65647

959689   17778

977521   101792

903983   *****

933511   36760

959929   141906

979039

904081   11616

934909   *****

959971   44128

981623   33353

904489

936083   16009

960139   27378

982531   41652

907021   33968

937639   45566

960301   430616

982547   73643

908183   10809

939259   10298

961099

983027

909473   13569

941207   19535

961313   155421

983663   44377

910733   200233

941741   51345

961621   35996

984185   10165

911123   479981

941993   31745

963227   196403

988741   23532

911791   129892

942227   215687

963661   35212

989147   635919

912721   47292

942233   32421

964549   82462

989567   31683

912889   10342

943373   304161

964673

990421   80560

913847   11127

943981   20672

965431   *****

990721   22188

918001   11616

944011   372216

965689   23782

991037   10423

919291   14756

945499   42134

968491

991951   40688

922081   65840

947963   10225

969533   75885

992731   731740

922463   141321

951233   14673

969769   33270

993767   186619

923177   611483

951593   159929

970457   11679

996811   16788

924683   421877

951961   39888

971071   19716

997699   18902

924773   13121

953597   62719

971389

 

925907

954211   28976

972443   17033

 

927181   39656

956749   95966

972739

 

 

Keller primes in the above tables are credited to the following (in no particular order):

 

Wilfrid Keller

Jeff Young

Duncan Buell & Jeff Young

Joe McLean*

Jim Fougeron*

Jim McElhatton*

Dirk Augustin*

Dan Morenus*

Ray Ballinger @

Sander Hoogendoorn*

Kimmo Herranen*

Brian Schroeder*

Contributors from the Prime Sierpinski Project, administrated by Harsh Aggarwal

Nestor Melo @

Daval Davis @

Phil Carmody @

Pavlos Saridis @

Pavel Chernishev

Contributors from the Seventeen or Bust Project, administrated by Louis Helm, David Norris & Michael Garrison

Contributors from the Proth Prime Search project using Primegrid

 

The projects listed above cover particular subsets of the entire range under consideration. For any significant dent in the remainder, I have to thank contributors to my own co-ordinated search, who are marked with an asterisk. An ampersand indicates people whose help was invaluable in the earlier days of the search.

 

The first Keller primes found during this search and with an exponent in excess of one million are: 305147*21030527+1 & 312121*21109856+1 obtained by Dan Morenus on (or slightly before) 03/12/2017 & 04/01/2018 respectively.

 

The number of survivors of complete searches to n = 100000, 200000, 300000, 400000 & 500000, including Sierpinski numbers, is are follows:

 

x

k

k

k

k

k

0

37

29

28

27

26

1

33

24

23

21

18

2

48

43

40

38

34

3

40

31

26

22

21

4

33

27

25

24

22

5

36

31

27

25

23

6

36

29

26

24

24

7

35

28

25

24

24

8

38

35

32

30

27

9

33

24

22

20

17

Total

369

301

274

255

236

 

The above tables can be summarised as follows, where the counts are of k for which no Keller prime is known, including and excluding Sierpinski numbers.

 

x

k

k exc

0

9

8

1

4

4

2

18

16

3

19

17

4

14

13

5

21

20

6

15

14

7

15

15

8

23

23

9

14

11

Total

152

141

 

 

The extended Sierpinski search to find Keller primes for the remaining values of k > 78557 not covered by any other project has an on-line status report updated regularly.

 

The number of outstanding k values left at each significant stage is as follows :

 

search limit (on n)

outstanding k values

1000

2931

2000

2002

3000

1645

4000

1413

5000

1282

10000

928

20000

701

50000

489

100000

368

200000

299

300000

272

500000

234

1000000

192

 

The figures up to 1000000 have now been confirmed complete. Above this limit, the values are not exhaustive and so may drop.

 

Last updated: 24/08/2023